
Foglight® 6.3.0
Creating Actions Field Guide

© 2023 Quest Software Inc.
ALL RIGHTS RESERVED.
This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a
software license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the
applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser’s personal use without the written
permission of Quest Software Inc.

The information in this document is provided in connection with Quest Software products. No license, express or implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest
Software products. EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE
AGREEMENT FOR THIS PRODUCT, QUEST SOFTWARE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO
EVENT SHALL QUEST SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR
INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN
IF QUEST SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest Software makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the
right to make changes to specifications and product descriptions at any time without notice. Quest Software does not make any
commitment to update the information contained in this document.

If you have any questions regarding your potential use of this material, contact:

Quest Software Inc.
Attn: LEGAL Dept.
4 Polaris Way
Aliso Viejo, CA 92656

Refer to our website (https://www.quest.com) for regional and international office information.

Patents
Quest Software is proud of our advanced technology. Patents and pending patents may apply to this product. For the most
current information about applicable patents for this product, please visit our website at https://www.quest.com/legal.

Trademarks
Quest, the Quest logo, and Where next meets now are trademarks and registered trademarks of Quest Software Inc. For a
complete list of Quest marks, visit https://www.quest.com/legal/trademark-information.aspx. “Apache HTTP Server”, Apache,
“Apache Tomcat” and “Tomcat” are trademarks of the Apache Software Foundation. Google is a registered trademark of Google
Inc. Android, Chrome, Google Play, and Nexus are trademarks of Google Inc. Red Hat, JBoss, the JBoss logo, and Red Hat
Enterprise Linux are registered trademarks of Red Hat, Inc. in the U.S. and other countries. CentOS is a trademark of Red Hat,
Inc. in the U.S. and other countries. Fedora and the Infinity design logo are trademarks of Red Hat, Inc. Microsoft, .NET, Active
Directory, Internet Explorer, Hyper-V, Office 365, SharePoint, Silverlight, SQL Server, Visual Basic, Windows, Windows Vista and
Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. AIX, IBM, PowerPC, PowerVM, and WebSphere are trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. Java, Oracle, Oracle Solaris, PeopleSoft, Siebel, Sun, WebLogic, and ZFS are
trademarks or registered trademarks of Oracle and/or its affiliates in the United States and other countries. SPARC is a registered
trademark of SPARC International, Inc. in the United States and other countries. Products bearing the SPARC trademarks are
based on an architecture developed by Oracle Corporation. OpenLDAP is a registered trademark of the OpenLDAP Foundation.
HP is a registered trademark that belongs to Hewlett-Packard Development Company, L.P. Linux is a registered trademark of
Linus Torvalds in the United States, other countries, or both. MySQL is a registered trademark of MySQL AB in the United States,
the European Union and other countries. Novell and eDirectory are registered trademarks of Novell, Inc., in the United States and
other countries. VMware, ESX, ESXi, vSphere, vCenter, vMotion, and vCloud Director are registered trademarks or trademarks
of VMware, Inc. in the United States and/or other jurisdictions. Sybase is a registered trademark of Sybase, Inc. The X Window
System and UNIX are registered trademarks of The Open Group. Mozilla and Firefox are registered trademarks of the Mozilla
Foundation. “Eclipse”, “Eclipse Foundation Member”, “EclipseCon”, “Eclipse Summit”, “Built on Eclipse”, “Eclipse Ready” “Eclipse
Incubation”, and “Eclipse Proposals” are trademarks of Eclipse Foundation, Inc. IOS is a registered trademark or trademark of
Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries. Apple, iPad, iPhone, Mac OS, Safari,
Swift, and Xcode are trademarks of Apple Inc., registered in the U.S. and other countries. Ubuntu is a registered trademark of
Canonical Ltd. Symantec and Veritas are trademarks or registered trademarks of Symantec Corporation or its affiliates in the U.S.
and other countries. OpenSUSE, SUSE, and YAST are registered trademarks of SUSE LCC in the United States and other
countries. Citrix, AppFlow, NetScaler, XenApp, and XenDesktop are trademarks of Citrix Systems, Inc. and/or one or more of its
subsidiaries, and may be registered in the United States Patent and Trademark Office and in other countries. AlertSite and
DéjàClick are either trademarks or registered trademarks of Boca Internet Technologies, Inc. Samsung, Galaxy S, and Galaxy
Note are registered trademarks of Samsung Electronics America, Inc. and/or its related entities. MOTOROLA is a registered
trademarks of Motorola Trademark Holdings, LLC. The Trademark BlackBerry Bold is owned by Research In Motion Limited and
is registered in the United States and may be pending or registered in other countries. Quest is not endorsed, sponsored, affiliated
with or otherwise authorized by Research In Motion Limited. Ixia and the Ixia four-petal logo are registered trademarks or
trademarks of Ixia. Opera, Opera Mini, and the O logo are trademarks of Opera Software ASA. Tevron, the Tevron logo, and
CitraTest are registered trademarks of Tevron, LLC. PostgreSQL is a registered trademark of the PostgreSQL Global
Development Group. MariaDB is a trademark or registered trademark of MariaDB Corporation Ab in the European Union and
United States of America and/or other countries. Vormetric is a registered trademark of Vormetric, Inc. Intel, Itanium, Pentium,
and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. Debian is a registered trademark of Software in
the Public Interest, Inc. OpenStack is a trademark of the OpenStack Foundation. Amazon Web Services, the “Powered by
Amazon Web Services” logo, and “Amazon RDS” are trademarks of Amazon.com, Inc. or its affiliates in the United States and/or
other countries. Infobright, Infobright Community Edition and Infobright Enterprise Edition are trademarks of Infobright Inc.
POLYCOM®, RealPresence® Collaboration Server, and RMX® are registered trademarks of Polycom, Inc. All other trademarks

https://www.quest.com
https://www.quest.com/legal
https://www.quest.com/legal/trademark-information.aspx

and registered trademarks are property of their respective owners.

Foglight Creating Actions Field Guide
April 2023
Foglight Version - 6.3.0

Legend

WARNING: A WARNING icon indicates a potential for property damage, personal injury, or death.

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data if instructions are not followed.

IMPORTANT NOTE, NOTE, TIP, MOBILE, or VIDEO: An information icon indicates supporting information.

Foglight 6.3.0 Creating Actions Field Guide 4

Adding Custom Action Types to Foglight . 5
About Foglight Actions . 5
Getting Started . 5

What You Need . 6
Configuring Environment Variables . 6
Creating the Directory Structure . 6
Configuring Build Properties . 7

Defining Custom Actions . 8
Writing the MBean Interface . 8
Implementing the MBean Interface . 9

Building Target Files . 10
Integrating Custom Actions with Foglight . 12

Installing CAR Files . 12
Testing Custom Actions . 13

Appendix: Code Samples . 16
build.xml . 16
build.properties . 18
MBean Interface . 18
MBean Interface Implementation . 19

About Us . 21
Technical support resources . 21

1

Adding Custom Action Types to
Foglight

This Creating Actions Field Guide provides conceptual information about actions in Foglight®, along with
configuration and instructions that will help you create custom action types.

This guide is intended for Foglight cartridge developers and field engineers who need to create actions in Foglight.

• About Foglight Actions

• Getting Started

• Defining Custom Actions

• Building Target Files

• Integrating Custom Actions with Foglight

• Testing Custom Actions

About Foglight Actions
Foglight® actions are building blocks that can be bound to rules. Actions can interact with other systems, run
scripts or manipulate the environment in other ways when a rule condition to which the action is bound to is met. A
default Foglight installation contains a collection of core action types that you can bind to rules as required. They
include email actions, command-type actions, script actions, and others. For complete information about core
actions and how to add them to rule definitions, see the Administration and Configuration Guide.

In monitoring environments where the functionality of core Foglight actions does not meet the needs of your
business requirements, you can create custom action types and add them to Foglight as required. This guide is
packaged with a ZIP file, Foglight_6.3.0_CreatingActionsFieldGuide.zip. Use this file as a template when creating
custom action types.

Getting Started
Before you get started with writing the code for custom actions, you need to ensure that your development
environment includes the tools you need, create a valid directory structure, and ensure that the appropriate
environment variables exist and point to the correct locations on your system. For complete information, see the
following sections:

• What You Need on page 6

• Configuring Environment Variables on page 6

• Creating the Directory Structure on page 6

• Configuring Build Properties on page 7
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 5

What You Need
First thing you need to do is to ensure that your development machine has all of the required tools needed to
proceed with writing and building your code. The following list identifies the required software components:

• JavaTM development environment. You can use your existing Java environment for writing and compiling
the code.

• Apache ANT. You will use Apache ANT for building and packaging the code. To download the latest
version of ANT, visit the following Web site:

http://www.apache.org/dist/ant/

• Foglight® Management Server. When you finish writing the code, you can test it by deploying the action to
the server. This will require access to the Foglight installation directory and a user account for the browser
interface.

Configuring Environment Variables
There are two environment variables that you need to ensure are configured as follows:

• ANT_HOME. Set it to point to the ANT installation on your computer.

• FOGLIGHT_HOME. Set it to point to the Foglight® Management Server installation on your computer.

Creating the Directory Structure
Creating a directory structure involves extracting the contents of the ZIP file,
Foglight_6.3.0_CreatingActionsFieldGuide.zip into a local directory. The following listing illustrates the directory
structure that appears after extracting the contents of the ZIP file.

Table 1. Directory structure

File/Directory Description

build.xml
ANT build file.
For a sample file listing, see Appendix: Code Samples, build.xml on page
16.

build.properties

Configurable properties file that contains build-related information about
the action name, package name, and the version number of the target
cartridge.
For a sample file listing, see Appendix: Code Samples, build.properties on
page 18.

/src Source directory containing a sample JavaTM code (see
ExampleAction.java and ExampleActionMBean.java below)./com

/sample
/action

ExampleAction.java
Implementation of the MBean interface.
For a sample file listing, see Appendix: Code Samples, MBean Interface
Implementation on page 19.

ExampleActionMBean.java
MBean interface of the custom action.
For a sample file listing, see Appendix: Code Samples, MBean Interface
on page 18.
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 6

Configuring Build Properties
Configuring build properties ensures that the correct parameters are passed to the build process and that the
resulting cartridge name and its version are properly set.

The build.properties file contains the following properties:

• name. Specifies the action name. It is set to ExampleAction by default.

• package. Specifies the package name. It is set to com.sample.action in the example shown in the
Foglight_6.3.0_CreatingActionsFieldGuide.zip file. If you intend to use a different package name and
hierarchy, modify this property as required. Changing the package name requires additional modifications
to the directory structure. For example, if you change the default package name to
com.mycompany.myaction, rename the sample directory to mycompany and the action directory to
myaction.

• version. Specifies the version of the target cartridge.

To configure build properties:

1 Open the build.properties file for editing.

2 The file includes the following lines of code:

name=ExampleAction
package=com.sample.action
version=1.0
Edit the name, package, and version properties as required.

For example:

name=MyCustomAction
package=com.mycompany.myaction
version=2.0

IMPORTANT: If you choose to modify this property to a different value, at a later step you will need to
edit the names of the MBean interface and its implementation class (ExampleActionMBean.java and
ExampleAction.java, respectively). This includes editing the file names as well as the interface/class
names in ExampleActionMBean.java and ExampleAction.java, respectively. For additional
information, see Defining Custom Actions on page 8.The file names use the following syntax in order
to follow ANT conventions for using
variables:${implementation_class}.java${interface}Bean.java

IMPORTANT: At a later step, you will need to ensure that the correct package name is used in the
package declaration at the beginning of the MBean interface and its implementation
(ExampleActionMBean.java and ExampleAction.java by default). For more information about
changing the package name in those files, see Defining Custom Actions on page 8.

NOTE: This procedure continues from Creating the Directory Structure on page 6.

IMPORTANT: If you made changes to the package property, ensure that those changes are reflected
in the directory structure. In the above example, modifying the entry com.sample.action to
com.mycompany.myaction requires that you change the name of the sample directory to
mycompany and the action directory to myaction.

IMPORTANT: It is recommended that you increase the version number each time you package a
new version of the action. Doing so ensures that the previous version is updated when you create
and install the later version of the cartridge containing the custom action.
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 7

3 Save your changes and close the properties file.

Defining Custom Actions
A Foglight® action is comprised of two major components:

• MBean interface (see Writing the MBean Interface on page 8)

• MBean interface implementation (see Implementing the MBean Interface on page 9)

These action-specific components need to be saved in the src directory, where package_name follows the
package hierarchy that is reflected in the directory structure. For example:

com/mycompany/someaction/SomeActionMBean.java (MBean interface)

com/mycompany/someaction/SomeAction.java (MBean interface implementation)

To find out more about the contents and structure of your working directory, see Creating the Directory Structure
on page 6.

Writing the MBean Interface
An MBean interface is the first action-specific component that you need to write. It includes the methods that you
implement at a later step

The MBean interface that you are about to write must meet the following requirements:

• Extends the BaseActionMBean class.

• Contains the following two mandatory methods:

▪ getParametersMetadata(). A method for providing meta-data used by the browser interface to
enable the end-user to supply input. This allows the user to provide the context by connecting it with
a Foglight registry variable, a rule-level variable, or a custom value.

▪ invoke(). A method that implements the action behavior.

Depending on the nature of your custom action, the MBean interface typically contains additional methods
that carry out your business requirements. Those methods, along with getParametersMetadata() and
invoke(), will be defined in the implementation of this interface at a later step, as described in
Implementing the MBean Interface on page 9.

Start by editing the sample file, ExampleActionMBean.java.

To write a MBean interface:

1 In your directory structure, locate the ExampleActionMBean.java file and change its name so that the file
name includes the action name configured in the build. properties file. For more information about
configuring this file, see Configuring Build Properties on page 7.

For example, if the configured action name is MyCustomAction, rename the file to
MyCustomActionMBean.java.

For information on where to find ExampleActionMBean.java in the directory structure, see Creating the
Directory Structure on page 6.

TIP: Later on, you will need to ensure that the package name is also updated in the package
declaration in the MBean interface and its implementation class. For more information, see Defining
Custom Actions on page 8.

NOTE: This procedure continues from Configuring Build Properties on page 7.
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 8

2 Open the file for editing.

For a sample file listing, see MBean Interface on page 18.

3 If you previously changed the package name from its default value, com.sample.action while
configuring build.properties, in the newly-renamed .java file, update the package declaration that appears
at the beginning of the file.

For example, if the package name is com.mycompany.myaction, replace the following line of code

package com.sample.action;
with

package com.mycompany.myaction;
4 Edit the interface name so that it matches the file name configured in Step 1.

For example, if the file name is MyCustomActionMBean.java, replace the following line of code

public interface ExampleActionMBean extends
BaseActionMBean

with

public interface MyCustomActionMBean extends
BaseActionMBean

5 If the custom action requires any additional methods, you can specify them at this point.

6 Save your changes and close the file.

You can now proceed to write a class that implements the newly-defined MBean interface. For more information,
see Implementing the MBean Interface on page 9.

Implementing the MBean Interface
In the implementation or the MBean interface you will define the behavior of all the methods that appear in the
interface.

The implementation of the MBean interface that you are about to write must include the definitions of the
mandatory getParametersMetadata() and invoke() methods, along with the definitions for any other
action-specific method that appear in the interface. For more information about getParametersMetadata()
and invoke(), see Writing the MBean Interface on page 8.

To implement the newly-written MBean interface:

1 In your directory structure, locate the ExampleAction.java file and change its name so that the file name
includes the action name configured in the build. properties file. For more information about configuring this
file, see Configuring Build Properties on page 7.

For example, if the configured action name is MyCustomAction, rename the file to MyCustomAction.java

For information on where to find ExampleAction.java in the directory structure, see Creating the Directory
Structure on page 6.

2 Open the file for editing.

For a sample file listing, see MBean Interface Implementation on page 19.

3 If you previously changed the package name from its default value, com.sample.action while
configuring build.properties, in the newly-renamed .java file, update the package declaration that appears
at the beginning of the file.

For example, if the package name is com.mycompany.myaction, replace the following line of code

package com.sample.action;

NOTE: This procedure continues from Writing the MBean Interface on page 8.
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 9

with

package com.mycompany.myaction;
4 Edit the interface and class names so that they both match the file name configured in Step 1.

For example, if the file name is MyCustomActionMBean.java, replace the following line of code

public class ExampleAction extends BaseAction implements
ExampleActionMBean

with

public class MyCustomAction extends BaseAction implements
MyCustomActionMBean

5 Implement the behavior of the mandatory getParametersMetadata() and invoke() methods, along
with any action-specific other methods that are declared in the MBean interface.

6 Save your changes and close the file.

You can now proceed to build you actions and integrate them with Foglight. For more information, see Integrating
Custom Actions with Foglight on page 12.

Building Target Files
The build process is comprised of a series of tasks that compile and package your JavaTM code. Those tasks are
described in the build.xml file and are executed by an ANT process. For a sample listing of the build.xml file, see
build.xml on page 16.

To build target files:

1 Open a Command Prompt window (Windows®) or a terminal window (UNIX® or Linux®).

2 Start the build process by issuing the following command:

Windows

"%ANT_HOME%"\bin\ant
UNIX

$ANT_HOME/bin/ant
A build log appears in the Command Prompt window or the terminal window.

Windows example

Buildfile: build.xml

init:

clean:

compile:
[copy] Copying 1 file to

C:\custom_actions\build\lib\core
[mkdir] Created dir: C:\custom_actions\build\classes
[javac] Compiling 2 source files to

C:\custom_actions\build\classes

sar:
[mkdir] Created dir: C:\custom_actions\build\sar

NOTE: This procedure continues from Implementing the MBean Interface on page 9.
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 10

[jar] Building jar:
C:\custom_actions\build\sar\MyCustomAction.sar

cartridge:
[unzip] Expanding:

C:\Quest_Software\Foglight\tools\fglant.zip into
C:\custom_actions\build\lib\ant
[car] creating cartridge archive: C:\custom_actions\

.\build\MyCustomAction-1_0_0.car temp file: C:\
custom_actions\.\build\MyCustomAction-1_0_0.car2
8653.tmp

[cartridge] creating cartridge: MyCustomAction-1.0.0
[cartridge] foglight version: 5.0

[car] adding Cartridge: MyCustomAction-1.0.0
[car] setting final flag: false on cartridge.
[car] adding Component: MyCustomAction-sar-1.0.0
[car] adding Item: MyCustomAction.sar
[car] Cartridge Archive Creation Successful

example:
[zip] Building zip: C:\custom_actions\build\example.zip

dist:

BUILD SUCCESSFUL
Total time: 4 seconds

The build process compiles your Java code and creates a build sub-directory in your directory structure. In that
directory, you will find a cartridge file (.car) that contains the custom action. The CAR file is a packaging artifact
that you will use to integrate the custom action. It is located at the root of the build directory.

The following table illustrates the structure the build directory and provides additional information about the
directory contents where necessary.

You have successful compiled and packaged the custom action code. From here, you can now proceed to
integrate your custom action with Foglight. For complete information, see Integrating Custom Actions with Foglight
on page 12.

Table 2. build directory contents

File/Directory Description
/build Contains the deliverable CAR file along with some temporary build files.

<action_name>-
<version_number>.car

This cartridge file is the final deliverable that you can use to integrate
your custom action with Foglight®.
The file name uses the following syntax conventions:

• action_name is the action name configured in build.properties.
• version_number is the cartridge version number configured in

build.properties.
For example: MyCustomAction-1_0_0.car.
For more information about the settings in the build.properties file, see
Configuring Build Properties on page 7.

example.zip
A ZIP file containing the artifacts that can be used to build the resulting
custom action and cartridge components. You can use it as a template
when creating custom actions at a later time.

/classes These directories contain the compiled Java code.
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 11

Integrating Custom Actions with
Foglight
The build process produces the cartridge file (CAR) that you can use to integrate the custom action with Foglight®.
The cartridge file can be installed and managed in Foglight as any other cartridge file. You can install and enable
the cartridge either through the browser interface or the command line using fglcmd’s cartridge:install
fglcmd command. For details, see Installing CAR Files on page 12.

Installing CAR Files
A cartridge file can be quickly installed and enabled on the Foglight® Management Server using the browser
interface. Another way of installing a cartridge is through the command line, by issuing the cartridge:install
command that is included in the fglcmd package. The following procedure illustrates the process of installing a
cartridge file through the Administration module in the browser interface. For complete details about the fglcmd
interface and the cartridge:install command, see the Command-Line Reference Guide. For additional
information about the Administration module, see the Administration and Configuration Guide.

The cartridge file, <action_name>-<version_number>.car, can be found in the build directory of your development
environment. For details about the contents of this directory, see Building Target Files on page 10.

To install and enable a CAR file using the browser interface:

1 Start the browser interface and log in to Foglight.

2 In the browser interface, ensure that the navigation panel is open.

To open the navigation panel, click the right-facing arrow on the left.

3 Open the Cartridge Inventory dashboard.

On the navigation panel, under Dashboards, choose Administration > Cartridges > Cartridge
Inventory.

The Cartridge Inventory dashboard appears in the display area, showing a list of all existing cartridges.

4 Select the cartridge file that was created during the build process.

For information about the build directory and its contents, see Building Target Files on page 10.

a Ensure that the File on Local Computer option is selected and click Browse.

b In the file browser that appears, navigate to the CAR file and select it.

The file browser closes and the Cartridge Inventory dashboard refreshes, showing the location of
the selected CAR file.

5 To enable the cartridge immediately after its installation, on the Cartridge Inventory dashboard, ensure that
the Enable on install check box is selected.

The Cartridge Inventory dashboard refreshes, showing the newly-installed cartridge in the list of installed
cartridges.

Upon a successful execution of the above steps, your custom action is integrated with Foglight. You can now
proceed to test the results of your custom actions. For details, see Testing Custom Actions on page 13.

NOTE: This procedure continues from Building Target Files on page 10.
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 12

Testing Custom Actions
You can test a newly-integrated custom action by creating a new rule and binding it to the custom action. This will
cause the action to be invoked each time the rule condition is met.

The recommended approach for testing custom actions is to create a simple, time-driven custom rule that is
triggered every ten seconds, with its condition set to True. This will ensure that the rule fires every ten seconds by
default. Furthermore, the rule should be bound to the custom action that you are about to test. When you save the
changes to the rule, you can verify if the custom action is invoked every ten seconds as specified.

The following procedure describes the process of creating a new rule and binding it to a custom action. For
complete information about rules, see the Administration and Configuration Guide.

To create a rule and bind it to a custom action:

1 Start the browser interface and log in to Foglight®.

2 In the browser interface, ensure that the navigation panel is open.

To open the navigation panel, click the right-facing arrow on the left.

3 Open the Create Rule dashboard.

On the navigation panel, under Dashboards, choose Administration > Rules & Notifications > Create
Rule.

The rule definitions appears in the display area with the Rule Definition dashboard open.

Figure 1. Rule Definition dashboard

4 On the Rule Definition dashboard, specify the following settings:

▪ Rule Name: Specify the rule name. For example, MyCustomAction.

▪ Rule Type: Simple Rule.

▪ Rule Triggering: Select the Time Driven option and set its Recurrence Interval to 10 seconds.

5 Write a rule condition consisting of a single logical expression: True.

NOTE: This procedure continues from Integrating Custom Actions with Foglight on page 12.
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 13

a Open the Conditions & Actions dashboard by clicking Next and click Fire to define a condition for
that state.

b Open the Condition tab.

Figure 2. Condition tab

c In the Condition box, type True.

6 Bind the custom action to the rule.

a Open the Email Notification & Recovery Actions tab of the Conditions & Actions dashboard.

Figure 3. Email Notification & Recovery Actions tab

b Ensure that Action Type is set to Entering.

c Click Action.

Your newly defined custom action appears in the Action list that expands.
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 14

Figure 4. Custom action

d Select the custom action in the list and click Add.

The custom action appears in the Action table.

7 Click Finish to save your changes.

Upon successfully saving the rule, the newly-created rule invokes the custom action every ten seconds. The
process of verifying the results of the custom action depends on the nature of the custom action.
Foglight 6.3.0 Creating Actions Field Guide
Adding Custom Action Types to Foglight 15

A

Appendix: Code Samples

This appendix contains code samples that illustrate the contents of the files found in the development directory.
You will find these file contents in the example.zip file packaged with this document. For information about the
directory structure, see Creating the Directory Structure, Creating the Directory Structure on page 6.

• build.xml

• build.properties

• MBean Interface

• MBean Interface Implementation

build.xml
<project name="BuildAction" basedir="." default="dist">

<property file="build.properties"/>
<property name="sar" value="${name}.sar"/>

<target name="init">

<property environment="env"/>
<fail unless="env.FOGLIGHT_HOME" message="Please define

FOGLIGHT_HOME pointing to FMS installation directory"/>
<fail unless="name" message="Please define name of action

in build.properties"/>
<fail unless="version" message="Please define version of

action in build.properties"/>
<fail unless="package" message="Please define package of

action in build.properties"/>

<mkdir dir="./build"/>
<echo file="./build/implementation.properties">dir=

${package}</echo>
<replaceregexp file="./build/implementation.properties"

match="\." replace="\\/" flags="g"/>
<property file="./build/implementation.properties"/>

<available property="implementation" file="./src/${dir}/
${name}.java"/>

<fail unless="implementation" message="Please provide
implementation ./src/${dir}/${name}.java"/>

<available property="interface" file="./src/${dir}/
${name}MBean.java"/>

<fail unless="interface" message="Please provide interface
./src/${dir}/${name}MBean.java"/>

 <tstamp><format property="now" pattern="yyyy/MM/dd-
Foglight 6.3.0 Creating Actions Field Guide
Appendix: Code Samples 16

HH:mm:ss"/></tstamp>
 <property name="buildid" value="${version}-${now}"/>

<mkdir dir="./build"/>

</target>

<target name="cartridge" depends="init,sar">

<!-- grab the tooling jars-->
<unzip src="${env.FOGLIGHT_HOME}/tools/fglant.zip"

dest="build/lib/ant"/>

<!-- define the cartridge ant task -->
<taskdef name="car" classname="com.quest.nitro.tools.ant.c

artridge.Car">
<classpath>

<fileset dir="build/lib/ant"/>
</classpath>

</taskdef>

<!-- package the car -->
<car destdir="./build">

<cartridge name="${name}" version="${version}"
buildId="${buildid}">
<component name="${name}-sar" type="Action"

version="${version}" deploytype="DEPLOY_STAND
ARD" deploymentitem="${sar}">
<fileset file="./build/sar/${sar}"/>

</component>
</cartridge>

</car>

</target>

<target name="compile" depends="init">

<!-- prepare foglight.jar -->
<copy overwrite="false" tofile="build/lib/core/foglight

.jar" file="${env.FOGLIGHT_HOME}/server/default/deploy/
foglight.sar"/>

<!-- compile classes -->
<mkdir dir="./build/classes"/>
<javac srcdir="./src" destdir="./build/classes">

<classpath id="car.task.classpath">
<fileset dir="${env.FOGLIGHT_HOME}">

<include name="lib/*.jar"/>
<include name="server/default/lib/*.jar"/>
<include name="server/default/deploy/

foglight.sar"/>
</fileset>
<pathelement path="build/lib/core/foglight.jar"/>

</classpath>
</javac>

</target>

<target name="dist" depends="init,clean,cartridge,example">
 </target>

<target name="clean">
Foglight 6.3.0 Creating Actions Field Guide
Appendix: Code Samples 17

<delete includeemptydirs="true" failonerror="false">
<fileset dir="./build" excludes="eclipse/**"/>

</delete>
</target>

<target name="sar" depends="init,compile">

<!-- create build directory -->
<mkdir dir="./build/sar"/>

<!-- prepare service descriptor -->
<echo file="./build/sar/jboss-service.xml"><![CDATA[<?xml

version="1.0" encoding="UTF-8"?>
<!DOCTYPE server PUBLIC "-//JBoss//DTD MBean Service

3.2//
EN" "http://www.jboss.org/j2ee/dtd/jboss-service

_3_2.dtd">
<server>

<mbean code="${package}.${name}" name="com.quest.
nitro.action:type=action,name=${name}"/>

</server>
]]></echo>

<!-- package sar file -->
<jar jarfile="./build/sar/${sar}">

<metainf file="./build/sar/jboss-service.xml"/>
<fileset dir="./build/classes"/>

</jar>
 </target>

<target name="example">
<zip destfile="build/example.zip">

<fileset dir="." includes="*" excludes="\.*,build"/>
<fileset dir="." includes="src/**"/>

</zip>
</target>

</project>

build.properties
name=ExampleAction
package=com.sample.action
version=1.0

MBean Interface
package com.sample.action;

import java.util.Collection;
import java.util.Map;
import com.quest.nitro.service.action.api.

ActionInvocationException;
import com.quest.nitro.service.action.api.ActionParameter;
import com.quest.nitro.service.action.api.
Foglight 6.3.0 Creating Actions Field Guide
Appendix: Code Samples 18

ActionParameterMetaData;
import com.quest.nitro.service.action.api.

BaseActionMBean;

/**
 * Sample action MBean interface
 */
public interface ExampleActionMBean extends BaseActionMBean
{

/**
* action invocation - part of the BaseActionMBean contract
*/
void invoke (Map<String, ActionParameter> parameters) throws

ActionInvocationException;

/**
* action meta information - part of the BaseActionMBean
* contract/
Collection<ActionParameterMetaData> getParametersMetadata ();

}

MBean Interface Implementation
package com.sample.action;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Map;

import com.quest.nitro.service.action.api.
ActionInvocationException;

import com.quest.nitro.service.action.api.
ActionParameter;

import com.quest.nitro.service.action.api.
ActionParameterMetaData;

import com.quest.nitro.service.action.api.BaseAction;
import com.quest.nitro.service.action.api.

SimpleActionParameterMetaData;

/**
 * Action MBean implementation for flushing JDBC connection pools
 */
public class ExampleAction extends BaseAction implements ExampleActionMBean
{

/**
* Implementation for providing meta data
/
@Override
public Collection<ActionParameterMetaData>

getParametersMetadata ()
{

Collection<ActionParameterMetaData> result = new
ArrayList<ActionParameterMetaData>();

ActionParameterMetaData log = new
SimpleActionParameterMetaData("Input", Boolean.class,
"Whether or not", false, Boolean.TRUE);
Foglight 6.3.0 Creating Actions Field Guide
Appendix: Code Samples 19

result.add(log);
return result;

}

/**
* Implementation for action invocation
*/
@Override
public void invoke (Map<String,ActionParameter> parameters)

throws ActionInvocationException
{

System.out.println("Doing it - "+parameters.
get("Input").getValue());

}

}

Foglight 6.3.0 Creating Actions Field Guide
Appendix: Code Samples 20

About Us
Quest creates software solutions that make the benefits of new technology real in an increasingly complex IT
landscape. From database and systems management, to Active Directory and Office 365 management, and cyber
security resilience, Quest helps customers solve their next IT challenge now. Around the globe, more than 130,000
companies and 95% of the Fortune 500 count on Quest to deliver proactive management and monitoring for the
next enterprise initiative, find the next solution for complex Microsoft challenges and stay ahead of the next threat.
Quest Software. Where next meets now. For more information, visit https://www.quest.com/.

Technical support resources
Technical support is available to Quest customers with a valid maintenance contract and customers who have trial
versions. You can access the Quest Support Portal at https://support.quest.com.

The Support Portal provides self-help tools you can use to solve problems quickly and independently, 24 hours a
day, 365 days a year. The Support Portal enables you to:

• Submit and manage a Service Request.

• View Knowledge Base articles.

• Sign up for product notifications.

• Download software and technical documentation.

• View how-to-videos.

• Engage in community discussions.

• Chat with support engineers online.

• View services to assist you with your product.
Foglight 6.3.0 Creating Actions Field Guide
About Us 21

https://www.quest.com/
https://support.quest.com

	Adding Custom Action Types to Foglight
	About Foglight Actions
	Getting Started
	What You Need
	Configuring Environment Variables
	Creating the Directory Structure
	Configuring Build Properties

	Defining Custom Actions
	Writing the MBean Interface
	Implementing the MBean Interface

	Building Target Files
	Integrating Custom Actions with Foglight
	Installing CAR Files

	Testing Custom Actions

	Appendix: Code Samples
	build.xml
	build.properties
	MBean Interface
	MBean Interface Implementation
	Technical support resources

