erwin® Data Modeler

API Reference Guide
Release 2018 R1

This Documentation, which includes embedded help systems and electronically
distributed materials (hereinafter referred to as the “Documentation”), is for your
informational purposes only and is subject to change or withdrawal by erwin Inc. at any
time. This Documentation is proprietary information of erwin Inc. and may not be
copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,
without the prior written consent of erwin Inc.

If you are a licensed user of the software product(s) addressed in the Documentation,
you may print or otherwise make available a reasonable number of copies of the
Documentation for internal use by you and your employees in connection with that
software, provided that all erwin Inc. copyright notices and legends are affixed to each
reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to
the period during which the applicable license for such software remains in full force
and effect. Should the license terminate for any reason, it is your responsibility to certify
in writing to erwin Inc. that all copies and partial copies of the Documentation have
been returned to erwin Inc. or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, ERWIN INC. PROVIDES THIS
DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT
LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL ERWIN INC. BE
LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT,
FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST
PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA,
EVEN IF ERWIN INC. IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH
LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the
applicable license agreement and such license agreement is not modified in any way by
the terms of this notice.

The manufacturer of this Documentation is erwin Inc.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States
Government is subject to the restrictions set forth in FAR Sections 12.212, 52.227-14,
and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or their
SuCCessors.

Copyright © 2018 erwin Inc. All rights reserved. All trademarks, trade names, service
marks, and logos referenced herein belong to their respective companies.

Documentation Changes

The following documentation updates have been made since the last release of this
documentation:

m Following topics have been updated to document the latest Target Database
Servers.

m Metadata Tags

m Property Bag Contents for Persistence Unit and Persistence Unit Collection

Contact erwin

Understanding your Support

Review support maintenance programs and offerings.

Registering for Support
Access the erwin support site and click Sign in to register for product support.
Accessing Technical Support

For your convenience, erwin provides easy access to "One Stop" support for all editions
of erwin Data Modeler, and includes the following:

m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
m Product and documentation downloads
m erwin Support policies and guidelines

m Other helpful resources appropriate for your product

For information about other erwin products, visit http://erwin.com/products.

Provide Feedback

If you have comments or questions, or feedback about erwin product documentation,
you can send a message to techpubs@erwin.com.

erwin Data Modeler News and Events

Visit www.erwin.com to get up-to-date news, announcements, and events. View video
demos and read up on customer success stories and articles by industry experts.

https://erwinhelp.zendesk.com/hc/en-us
https://erwinhelp.zendesk.com/hc/en-us
https://erwinhelp.zendesk.com/hc/en-us/categories/204178867-Solutions-Downloads-and-Compatibility
http://erwin.com/products/
mailto:techpubs@erwin.com
http://erwin.com/
http://erwin.com/

Contents

Chapter 1: Introduction to API 9
Y o] gl o= (U =TT 10
TYPICAI USE CASES ..eeenutieiuiieeitie ittt et e sttt et s ettt e sttt et e e s bt e bt e eab et e bt e s be e e bt e sabe e e beeeabe e e bbeeabeeeabbeebeeesabeennteesaneenees 10
) =1 a T] (o] o T=T 1 11=Y o PSPPSRI 11
Fi¥o o B 1o W@ go Yo a =T}l] Yol o T | AR 11
Chapter 2: APl Components 13
OVEBIVIBW ...ttt ettt e e e ettt e e e e e sttt e e e e e saabe e et et e e e sa s s e b et e e eeeaeaann s e e et e e e e e s ansaeeeeeeeesaannsbeeeeeeesannnraneeeeesesannreneeaeens 13
F VoY o] Lot 14 o] o T T PSSR 13
MOAEI DIFECLOIY TIBI .netieiiteiitteet ettt sttt ettt e et e st e e bt e s bt e bt e sabe e e bt e sabe e e bt e sabeeesee s beeebeesabeeesnbeebeeesnneenees 14
=T (o] o T =T PP PUPPPPPRRPIOt 15
[LeTo [T M DT | 7 I =Y OO 15
FAYol oI do 1Y [oTe 1=l B T = F PSSP 16
(0] oJ[=Tet 3= Ta o I 2 oY o T=T Y-SR 17
(0] o] =Tot A o [=T o 4 1T SO TP PR TPPRROPPTOPRUPPRINE 17
Object Identifiers and TYPE COUES ...cc.uuiiiiiiiiiiie ettt ettt et b et e sbe e st e s bt e sbeesbeesabaeesseesbeeenaeenane 18
Properties, Property FIags, anNd ValUe FACETS.......c..eeiciiiiiiciiee ettt sttt e et e e e ate e s s tba e e e sataeeeenstaeesnnnaeas 19
Scalar and NON-SCalar Property ValUES.........uuiiiiiiei i cciiee et e ettt e e tte e e s tte e e e stta e e s eaaae e e satbeeeeataeeeensaaeessreeaans 20
ColleCtions AN AULOMEATIONuiiiiiiiee ettt ettt sttt e e sttt e e e a bt e e s ebte e e sabbeeeesabeeesaasbeeesanbteeeaabaeesaastaeesnnseeas 20
_NewEnum Property of @ ColleCtion OBJECTccuiiiieiiie e e e e e e s e e e nneeas 21
(B2 = LU o] o T=T o 4 =3P 21
(0] 1o g I T =10 1= =T SRR 22
N (ol ad Y=Y] o] (I @ =T o ST PURRNt 22
(U 1Yo Tl ad IR T oo LI @ 1T o PR 22
(LT T o)V PSPPI 24
How the erwin Spy APPliCation WOTKS........ccuiiiiiiiieieiie e ceies sttt e st e e et e e e saee e e snaeaeesntaeeeesseeesnnneeas 24
Chapter 3: API Tasks 27
FAN ol =1 0 1V o] a1 4 =T o L APPSO RUPPRTRPIR 27
Creating the ISCAPPIICATION ODJECE ..ciiiiiiiiiiiiie et ettt e e e st e e s sbte e e saba e e s sabaeesssbaeesasaeas 28
FaY oY o] [Tor 1 dTo] g T e deT o =] o =T OO O O PP PTPPRRPI 29
(N0 o] o] 1o A 1o oI o1 d=T & - ol PO P U PP STPTOPP 29
ISCAPPICAtIONENVIFONMENT . .eiiiiiiitieet ettt ettt ettt be e st e e bt e s be e e sbte s beeesatesbeeessnesnseas 30
ACCESSING @ IMOTE ..ttt e ettt e s st te e e s bb e e e s abe e e s abteeesabbeeeensbeeesaasaeessabbeeesnnbaeesaanaeas 33
Using the APL as an Add=in TOOI ...c.c.uiiiiiiiiiiiiee ettt e e sttt e e s abe e e ssabbe e e sbbeeessnbaeesaanaeas 33

Contents 5

Using the APl as @ Standalone EXECULAbIEooiiiiiiiiiee e e 38

Creating @ IMOTE....co ittt ettt et b e e b e s bt et e sttt e bt e s bt e e bt e s b e e e bt e s bt e e bt e e beeenneenane 39
OPENING aN EXISEING IMOTEI ...oeiiniiiiieeiee sttt e e et e e e st e e e e ata e e saaaeeesstaeesenssaeesnsseesenssseananens 41
OPENINEG @ SESSION 1.ieiiieieieceieieteieserereree e sesesesesesese s e sesesssesesesesesesesasssasesssssesasesssasesssssssasssssnsssesssssssssssnsnsssesssesnsnsnses 42
ACCESSING @ MOUEBI SEL.....iiieiiee et e et e et e e e st e e e ata e e s e saeeesasteeeestaeesansseeesnsseeeassaeesnnsreeessseaaans 44
AcCCeSSING ODJECES 1N @ IMOUE! ...ttt st e st e e st e st e e sabeesate e sabeesaneesareeennee s 47
ISCSession Interface
[0\ [oYe [Y[0] oY T=Tet {@o1 | [Tt dToT i [4= =Ll 47
(@11 foTe [Y (0] oY T=Tot a1 =Y o =T < R 47
ACCESSING @ SPECITIC OBJECE c.nueeeiiiiiiie ittt et et st e e st e e st e s abe e sateesaneesabeesanee s 49
Filtering ODJECt COIECTIONSeieieieitieet ettt sttt e bt e st sbee s be e e sbnesabeeesaneenees 51
Accessing Object Properties
(17T Yd o] T o) il foT 1= o =TSR
(@11 foTe [=Y g T o TT g AV [0] A= s =1 <SPS 61
Iterating Over NoNn-Scalar Property ValUEScoouiiiiieiiiiiiie ettt sttt sttt be e e 62

Accessing a Specific Property

Filtering Properties
Modifying the Model Using Session Transactions
2Ty <] oI T K- [l A o o DO PPNt
(00T 00T ooV I = 14 1Y T o] o IO U PUPPP PRI
CrEATING OBJECES ..ttt ettt e bttt e sttt e bt e s b et s bt e s bt e e bt e s b et e bt e s be e e bt e s beeenaee e beeennee et
ISCModelObjectCollection Interface
Y] o= e deT o= o AV A =Y (VT S UPP
Setting SCAlAr ProPertY VAIUESooiieiiiie ettt ettt e et e e ettt e e e e te e e s bt e e e e ataeeseataeeesatbeeeestaeeennsaeeesnsaneaans
Setting NoN-SCalar PrOPEItY VAIUESccoceiii ettt sttt st e s st e e e st e e saaae e e s s taeesenneeessnseeeesnseeesnnnes
(1] AT Y= @] o] =T o USSR
ISCModelObjectCollection Interface
Deleting Properties and Property Values

ISCModelPropertyCollection INTEITACEcccuiii ittt e e et e e e et e e e etbeeeesabaeeeesraeeenanaeas 80
(Y011 foTe 1Y doT o TT g AV [=Y o = S 80
Deleting NON-Scalar Property VAlUEScooiuiiiiiiie et cetes sttt e e e e e ate e st e e e st e e s saaaeessnaeeeesntseeessseeesnnsneas 81
SAVING TN IMIOUEN..c.ceeiiiieeee et e e e e e et e e e e e e e e e setbataeeeeeesaasaetaaeeaaesessstaaaeaeseesansssaneaasessnnsssrens 82
ISCPErSiStENCEUNIT INTEITACE ... it itii ittt e et e et e aae e be e s sbaeebeeesseeebaeesssesnseas 82
Accessing Metamodel INFOrMAtioNccciii it e e e e e e s ree e e st e e e este e e seaaeeeesnbaeeeanteeesnnneeas 83
ISCAPPlicatioNENVIFONMENT INTEITACEuii i e e e s nr e e e sate e e e enreeesnnnneas 84
[SCSESSION INTEITACE ..eueiieiieeitee ettt ettt et s b et bt e s bt e e bt e s bt e e bt e s b et e bte s beeebeesabeeesateebeeesaneenees
(0o T Y= 48 1 o 1= o] 1S PPR PP
[SCSESSION INTEITACE ..eeiiiiiiii ettt ettt e e st e e st e e s et e e e s bt eeeeaabteessasbeeesbbaeesaabeeessasbaeesaasaeas

ISCSessionCollection Interface
Clearing PersiStENCE UNITS......uiiiiiieeciie e ceiiee e see e tee e s ee e e st ee e e st e e e seaaeeeesataeeeensteeessseeeesssaeesansseeesanseesesssenenanes
Error Handling

Y 07:Y o o] [Tor=TaToT o] =03V 1 o] 0] s 4 =] o | APU USRIt

6 API Reference Guide

AAVANCEA TASKS 1vvvvvuvurriiriitiiuiiueirtrueisterererererere..—.————————————————rereresssesssesnsnne 91

Creating User-Defin@d PrOPEIrTIESc.ui i ii ittt ettt sttt st e s bt s bt e e bt e sbeeesneeebaeenaeenane 92
[[T o T VA I =Tl 4 =SS 95
Appendix A: API Interfaces Reference 99
(1707 o] o] o7 1 4 Lo o KPS SRR 99
F A o B =T o = Lol T PP PP PSPPI 100
ISCAPPIICAtIONENVIFONMENT ...ttt ettt e st e e bt e st e e bt e sabeeeneesabeeeneenane 100
[SCIMIOEIDITECEONY ...eeuetieiteeittteet ettt ettt s bt e et e st e et e s b e e bt e s bt e e bt e sab e e eabeesabe e e bt e sabeeeaseesabeeeneesabeeeneenane 101
(@11 foTe I=Y] D11 =Tt do] ¥ 6o] | F=T o1 { [o ISR 105
(17011 FoTe 1Y 011 =Tt 4o VU Lo 1 SRS 107
(17011, [oTe 11 (0] o] T=T o1 RS PSR 109
ISCMOAEIODECLCOIECTION ..ttt st st e e st e bt e st e e st e s beesneesabeesseenane 112
[SCIMIOTRIPIOPEITY c..eeeiteeeiete ettt ettt s e e et s bt e st e st e e bt e st e e e bt e sabeeeabeesabeeeabeesabeeeaseesabeeenneesabeeenneenane 116
(@11 foTe I=Y] doY o TT AL 0o} | 1=Yo d o o WSS 121
Y@1Y oo [T Y] S OO PP URUPPOPPRTRN 127
[N @Y oo [T Y =1 { 0] | [=Tot o T WO OO URR PPN 129
N0 = S] =T [ol =1 U | PSP PPPPPPPPN 130
(Y 01 Y e R =T ol =1 U Lo 11 { @e | [=Tor o o H PSP 139
Y01 o] =T a2 T T PPNt
ISCPropertyValue
ISCPropertyValUBCOIECHIONooieieiieeeeee ettt ettt e e bt e et e st e e s bt e sabe e e st e sabeesneesane 146
Y ORY=T] (o] o VP PP UPPPTPPPTRRN 148
ISCSESSIONCOIECLION ...ttt e st s b e st e s b e e bt e sabeeeabeesabeesabeesabeesnbeesabeesneesabeesneenane 152
o [0 4 1T =) A o] o PSP U PP UPPPPPPPTRTUPIOE 153
R O Y [e L= [T =Tor de] 4V & == U UPPRROE 153
S O Y [To L= [Yot e Vi Y/ o1 SRR 154
S O Y [Yo L= (0] o T = d o =4SP 154
N O Y [Yo L= o] oY= a VA o - =4SP 154
N O Y=ET (o] o1 2 - =4SPPSRt 155
R O Y=ET [o1 M1 =] PR UPPRROE 155
S O 1L T Y o LTSRS 156
o oIt AV 2 Y e oY = =Y o 1ol SR 157
Property Bag for Application ENVIFONMENTcccuiiiiiiiee et ettt e et e e e tve e e eeate e e eeaaae e e e baeeeearaeeseanaeas 157
Property Bag for Model Directory and Model Directory UNit..........ccceeeeiiiiieieiiiieccieee et cveee e e 164
Property Bag for Persistence Units and Persistence Unit Collections.......cccccceeieiiiiieieiiicciiiieeee e 167
PrOPEItY Bag fOr SESSION ..ueiiiiiiieeciiie ettt et e et e e st e e et e e s e e e e e s taeeeessteeesassteeesasaeeeastaeeeanseeeesnseeeeanteeesnnnnes 172
Location and Disposition in Model Directories and Persistence UNits........cccceeivvieeeeiieeieiiee e cieeeeseiee e seeeee e snveee s 173
(o Tor: | £o] gl o foT o 1T o 0 AR PPNt 174
[BIT o To Xy d ol o I = o] o 1=1 u 4 VA PPNt 176

Contents 7

Appendix B: erwin DM Metamodel 179

Metadata Element RENAMINGooiiiiiiiiiee ettt ettt st e bt e st e s st e e sab e e eat e e sabeesaeeesabeenaneens 180
VI o Y N 01 == Ta T 4 o] o RS 181
(V=YY aaToTe [y I S =T o o 1= oL O USRS USTOTPRN 181
IMIEEAAATA TAES +eeuveerurieiiteeiee ettt e ettt e bttt e s bt e bt e e bt e bt e e bt e e s be e e bt e e ebb e e bt e e sabeeeneeesabeeenteesabeeeabeesabeenaneenn 182
ADbStract Metadata ObjJECEScouiiiiiiiieee ettt ettt st e he e aneenees 185
IMELAMOUE] CIASSES «..uvveiiiirieeeiiiee ettt sttt e sttt e e sttt e sttt e e s sabteeesabeeesaaseeessabaeessasteeesasseeeesabaeesanteessssaeesnseeesnnns 185
) Y| Yol o 1= o o - PP PP PSPPI 185

8 API Reference Guide

Chapter 1: Introduction to API

The Script Client API that is part of erwin DM provides advanced customization
capabilities that enable you to access and manipulate modeling data in memory at
runtime, as well as models persisted in files and in a mart. The APl interfaces are
automation-compatible and provide extensive design and runtime facilities for
third-party integrators as well as users of script-based environments.

The APl complements the original modeling tool with custom components when you
use scripts, add-ins, and COM-based API technologies. The APl is flexible and promotes a
seamless integration of the modeling tool in a client development cycle.

This section contains the following topics

Major Features (see page 10)
Typical Use Cases (see page 10)

Chapter 1: Introduction to API 9

Major Features

Major Features

The APl is a group of interfaces that includes the following features:
Active Model Data Objects (AMDO)

Lets a third-party client to access model data through a COM
automation-compatible API. This feature is the major component in the API
functionality. All interfaces that comprise the APl are automation-based, and are
therefore dual. These dual interfaces allow you faster access to methods and
properties. Using dual interfaces, you can directly call the functions without using
an Invoke() function.

Collections and enumerators

Facilitates programming constructions in script languages that target the AMDO
automation features.

Connection points

Delivers a collection of connection points interfaces and support for the ITypelnfo2
interface to support the sync event facilities of languages.

Automation-rich error handling

Supports automation-rich error handling through IErrorinfo interfaces exposed by
the APl components.

Active Model Directory

Lets you navigate available model storage, including marts. Delivers the ability for a
client to open or to create a model in a file as well as from a mart.

Active Scripting

Lets you host a scripting environment and provide an invocation mechanism for
script and add-in components. A mechanism is provided to register add-ins and
scriplets with the Active Scripting environment.

Typical Use Cases

The typical use cases of the API are automation and scripts to support specific interface
design requirements imposed by COM automation standards. For example, you can be
limited to a single incoming and outgoing interface exposed by any particular COM
object. This limitation is due to the fact that the only recognizable interface type for
pure automation is IDispatch and it renders the use of Queryinterface functionality unfit.
The common technique to address the problem includes Alternate Identities and
read-only properties that expose secondary interfaces.

10 API Reference Guide

Typical Use Cases

Another example of a targeted domain customer is one using alternative (not C++)

languages to implement a client. The list includes Visual Basic, VB Script, Java Script, and
so on. The list includes specially tailored language idioms to encapsulate language-COM
binding, such as collections of objects, connection points, rich error handling, and so on.

The APl combines number of components and presents them as a set of interfaces
accessible using COM.

The list of integrated components includes erwin Data Modeler and Microsoft Internet
Explorer.

Standalone Client

One of the ways the APl is used is as a standalone client. A third-party client activates
the API as an in-process server. The APl component does not have visual representation,
that is, it does not expose a user interface. The API provides Active Model Directory
facilities to specify a target model from a list of available models. Active Model Data
Objects provide session-based access to model data.

There are times when API clients can compete with other parties over access to model
data. Using erwin® Data Modeler Workgroup Edition provides advanced model sharing
facilities to prevent other parties from accessing the model during your session.

Add-in Component or Script

Another way the API is used is as an add-in component or script. erwin DM hosts
third-party add-in modules and scripts. The Active Scripting component in the API
provides a mechanism for registering modules with a host tool, arranging
representation in the host user interface, creating add-in menus, and invoking them on
the host menu selection or event.

The add-in module is a client DLL, activated in-process.

The script is a VBScript or JScript procedure embedded in a DHTML document, activated
using a menu or a model event. This Active Scripting provides hosting for web browser
control and makes the API objects available through the window.external property of
the DHTML object model.

You can observe changes in a model on the screen and can activate a pause to
investigate the state of a model by accessing the modeling tool user interface.

Chapter 1: Introduction to APl 11

Chapter 2: APl Components

This section contains the following topics

Overview (see page 13)

Access to Model Data (see page 16)
Objects and Properties (see page 17)
Collections and Automation (see page 20)
The API Sample Client (see page 22)

erwin Spy (see page 24)

Overview
The API is a collection of interfaces that represent erwin DM functionality. The
application exports the top-level interface, from which the client obtains lower-level
interfaces as needed. Interfaces are logically grouped into tiers, where each tier includes
interfaces that represent the functionality of the application. Each tier is represented in
the following sections, with a table describing the interfaces grouped into that tier.
Application Tier
The Application Tier represents erwin DM functionality, establishes access to models in
persistent storage, and controls the exchange between models in memory and models
in persistent storage. The following table describes the interfaces of the Application
Tier:
Interface Role
ISCApplication Represents application-wide functionality, and serves as the
entry point for the interface hierarchy of the API. Holds a list
of available persistence units and connections between the
client and persistence units.
ISCApplicationEnvironment Provides information about the runtime environment.
ISCPersistenceUnitCollection Collects all active persistence units known to the application.
ISCPersistenceUnit Represents an active persistence unit (such as a erwin DM
model) within the application. A persistence unit groups data
in the form of model sets. Clients can connect to persistence
units to manipulate them and the data they contain.
ISCModelSetCollection Represents model sets associated with a persistence unit.

Chapter 2: API Components 13

Overview

Interface Role

ISCModelSet Represents a model set (such as EMX or EM2 classes of
model data) within a single persistence unit.

ISCPropertyBag Represents an array of properties for application tier
interface calls.

This is a graphical representation of the relationships of the Application Tier:

Model Directory Tier

The Model Directory Tier accesses and manipulates the persistence storage directories,
such as a file system directory or a mart directory. The following table describes the
interfaces of the Model Directory Tier:

Interface Role

ISCModelDirectoryCollection Enumerates all top-level model directories available for
the API client.

ISCModelDirectory Encapsulates information on a single model directory
entry.

ISCModelDirectoryUnit Encapsulates information on a single directory unit.

This is a graphical representation of the relationships of the Model Directory Tier:

14 API| Reference Guide

Overview

Sessions Tier

The Sessions Tier establishes access to model data in memory. The following table
describes the interfaces of the Sessions Tier:

Interface

Role

ISCSessionCollection

Collects all active sessions between the API client and the
persistence units.

ISCSession

Represents an active connection between the client and a
model. Clients create sessions, and then open them against
model sets of persistence units. An open session exposes a
single level (such as data, metadata, and so on) of a model set.

This is a graphical representation of the relationships of the Sessions Tier:

Model Data Tier

The Model Data Tier accesses and manipulates model data. The following table
describes the interfaces of the Model Data Tier:

Interface

Role

ISCModelObjectCollection

Represents objects available for manipulation.
Membership in this collection can be limited by
establishing filter criteria.

ISCModelObject

Accesses and manipulates a single object within a model.

ISCModelPropertyCollection

Represents a list of properties owned by a single object.
The list can be limited by using filters.

ISCModelProperty

Accesses and manipulates a single property. Properties
may contain multiple values. Values within a multi-valued
property are accessed by keys. The current multi-valued
property implementation treats the value list as an array,
and the key is the array index.

ISCPropertyValueCollection

Represents a list of single property values.

ISCPropertyValue

Data and a key are contained within a single value.

This is a graphical representation of the relationships of the Model Data Tier:

Chapter 2: API Components 15

Access to Model Data

Access to Model Data

The API allows API clients to manipulate models. An API client locates models in
persistence storage by using the Model Directory Collection, Model Directory, and the
Model Directory Unit components. By using its properties, the Model Directory Unit
provides the information necessary to register the unit with the pool of available
persistence units by using the Persistence Units collection. The API client can then
specify access attributes such as read-only or ignore locks. A new model can be created
and registered with a persistence unit collection. erwin DM can add or remove models
from the pool as a response to user interface actions.

A persistence unit maintains a set of properties to control visibility in the application
user interface, access attributes, and so on. A persistence unit organizes data as a group
of linked model sets. The model sets are arranged in a tree-like hierarchy with a single
model set at the top. The top model set in the persistence unit contains the bulk of the
modeling data. The API uses the abbreviation EMX to identify the top model set. The
EMX model set owns a secondary model set abbreviated as EM2, that contains user
options and user interface settings.

API clients access the model data by constructing a session and connecting it to a model
set using the Session component. A model set contains several levels of data. It contains
the data the application manipulates, such as entity instances, attribute instances, or
relationship instances.

The model set also contains metadata, which is a description of the objects and
properties that may occur within the application's data. In erwin DM, metadata includes
object and property classes, object aggregations, and property associations. The
metadata defines each object class that may occur within a model, for example, an
entity class, an attribute class, or a relationship class. Object aggregations identify an
ownership relationship between classes of objects. For example, a model owns entities,
entities own attributes, and so on. The property associations define property usage by
object classes. For instance, the metadata includes property associations for every
object class that has the Name property.

16 API Reference Guide

Objects and Properties

Clients specify the necessary level of model data at the same time as connecting a
session to a model set. When a new model is created it acquires a set of default objects,
such as model object, main subject area, and stored display. The initial API
implementation supports the following levels:

Name Description Supported Actions

SCD_SL_ MO Model Level Access model data, create and
delete objects (including the entire
model), and set property values.

SCD_SL_ M1 Metamodel Level Access object and property
definitions, along with other
metadata. Create and delete
user-defined properties and
user-defined object definitions.

Levels are identified by long integer values. Values have symbolic definitions.

Objects and Properties

Object Identifiers

The API presents data in object/property form. In a erwin DM model, for example, an
attribute is represented by an instance of an Attribute object. The name of the attribute
is contained in the Name property of the Attribute object.

Each object must bear an identifier, which is a value that uniquely identifies the object
instance. Internally, object identifiers are 20 bytes long. They contain two components:
a GUID (also known as a UUID) in the first 16 bytes, and a 32-bit unsigned integer suffix
in the last 4 bytes.

A GUID contains the following components:

® One 32-bit unsigned integer

m Two 16-bit unsigned integers

m Eight 8-bit unsigned integers (represented as unsigned characters)

These components total of 128 bits, or 16 bytes. Therefore, an object identifier contains

an extra 32-bit unsigned integer (the 4 byte suffix) at the end for a total of 160 bits, or
20 bytes.

Chapter 2: API Components 17

Objects and Properties

To simplify working with object identifiers and due to COM automation limitations on
datatypes, the API uses a string to represent object identifiers.

The following table lists aliases used in this guide and in the interface definitions:

Type Name Format Use
SC_OBIJID {XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX }+Ssuffix Object identifier
SC_CLSID {XXXXXHKX-XXXK-XXXX-XXXK-XXXXXXXXXXXX }+SuFfix Class (object, property

type, and so on) identifier

SC_MODELTYPEID

{XXXXXHKX-XXXK-XXXX-XXKXK-XXXXXXXXXXXX }+Suffix

Model type identifier

SC_CREATORID

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

Creator identifier

The identifiers whose GUID component contains zero is one set of object identifiers that
is predefined. If the final 4 bytes of the identifier also contain zero, the identifier
represents a null identifier. Other values of the offset are reserved for future use.

Object Identifiers and Type Codes

Consider the relationship between object instances in the SCD_SL_ MO layer and object
instances in the SCD_SL_ M1 layer. An instance in the SCD_SL_ MO layer is described by
an instance in the SCD_SL_ M1 layer. For instance, a single object in the SCD_SL_ M1
layer describes every entity instance in the SCD_SL_ MO layer.

Since all type codes are also object identifiers, they must have the same format.

18 API Reference Guide

Objects and Properties

Properties, Property Flags, and Value Facets
Properties present data in the form of values and additional flags.
Property values are either scalar with a single value, or non-scalar with multiple values.

More information about scalar and non-scalar property values is located in the Scalar
and Non-Scalar Property Values (see page 20) section.

Property values are defined by a property type, such as a string or an integer. More
information about property types is located in the Enumerations (see page 153) section.
Two types of additional property flags exist:

Property level flags

Provide information about the property and are read-only. Property level flags can
provide the following information about a property instance:

Metadata information

Shows whether a property in the metadata is user-defined or contains a scalar
value.

Property state information
Shows whether or not a property is read-only.
Data source information
Shows whether or not a data source is calculated.
Property value level flags
Convey information about property value and can be updated.
An individual property level flag is represented by a bit field in the property flag's value.

The flags are provided for information only and cannot be changed. More information
about specific property flags is located in the Enumerations (see page 153) section.

The value level flags, or facets, convey additional data associated with property value
such as if a property value was 'hardened' and cannot be changed due to inheritance.

An individual facet is identified by a numeric ID or a name and has one of three possible
states: non-set, set to TRUE, or set to FALSE.

The facets are treated as part of the property value. Assigning a new value to a property
places all facets in the non-set state. Similarly, a value update or removal renders all
facets into the non-set state. There is only one combination of facets per property,
either scalar or non-scalar. Changes in individual values of non-scalar properties do not
affect the property facets. More information about specific value facets is located in the
Property Bag for Application Environment (see page 157) section.

Chapter 2: API Components 19

Collections and Automation

Scalar and Non-Scalar Property Values

A scalar property is a property that can be represented as a single value. The properties
that contain multiple values (either homogeneous or heterogeneous) are non-scalar
properties.

The type of a property can be recognized by reviewing the property flags. Scalar
properties have a SCD_MPF_SCALAR flag.

More information about specific property flags is located in the Enumerations (see
page 153) section.

The value of a scalar property or a single member of a non-scalar property is accessed
through the Value property of the ISCModelProperty interface.

Note: Heterogeneous non-scalar properties are not supported by this product.
Members in a non-scalar property always have the same datatype.

A property, either scalar or non-scalar, can have a special NULL value. The properties
with a NULL value have a SCD_MPF_NULL flag set.

Collections and Automation

Automation defines the IEnumVARIANT interface to provide a standard way for the API
clients to iterate over collections. Every collection interface in the APl exposes a
read-only property named _NewEnum to let the API clients know that the collection
supports iteration. The _NewEnum property returns a pointer on the IEnumVARIANT
interface.

20 API Reference Guide

Collections and Automation

The IEnumVARIANT interface provides a way to iterate through the items contained by a
collection. This interface is supported by an enumerator interface that is returned by the
_NewEnum property of the collection.
The IEnumVARIANT interface defines the following member functions:
Next

Retrieves one or more elements in a collection starting with the current element.
Skip

Skips over one or more elements in a collection.
Reset

Resets the current element to the first element in the collection.
Clone

Copies the current state of the enumeration so you can return to the current
element after using Skip or Reset.

The IEnumVARIANT collection implements a Rogue Wave Software, Inc. style advance
and return iteration. For this reason, they have the following life cycle:

When the iterator is created, it enters the Created state, and then forces itself into the
BeforeStart state. A successful advance drives the iterator into the InList state, while an
unsuccessful advance drives it into the AtEnd state. A Reset drives the iterator back to
the BeforeStart state, and deletion drives it into the Deleted state.

Note: The iterator is positioned over a member of the collection (that is, associated with
a current member) only if it is in the InList state.

_NewEnum Property of a Collection Object
The _NewEnum property identifies support for iteration through the IEnumVARIANT
interface. The _NewEnum property has the following requirements:
m The nameis_NewEnum.
m [t returns a pointer to the enumerator /Unknown interface.

m The Dispatch identification for the property is DISPID = DISPID_NEWENUM (-4).

Default Properties

A default property for automation is the property that is accessed when the object is
referred to without any explicit property or method call. The property dispatch identifier
is DISPID_VALUE.

Chapter 2: API Components 21

The APl Sample Client

Optional Parameter

To support automation client requirements, all optional parameters are represented as
VARIANT. For that reason, a parameter type in an interface description is only to
document an expected type in the VARIANT structure.

The APl Sample Client

Two Visual Basic .NET sample projects are provided with the API, erwinSpy.NET.x64.exe
and erwinSpy.NET.x86.exe.

If you run the Custom Setup type of installation, select the erwin APl Sample Client
when prompted to select the program features that you want to install. After
installation, you can access the two sample Visual Basic .NET projects from the
erwinSpy.NET subdirectory in the erwin® Data Modeler installation folder.

Using the API Sample Client

This section describes how to utilize the APl sample client as a standalone version and as
an add-in component.

The standalone version of the sample program is either erwinSpy.NET.x86.exe or
erwinSpy.NET.x64.exe. You can build erwinSpy.NET to create erwinSpy.NET.x86.exe or
erwinSpy.NET.x64.exe. This program is a erwin DM model data browser that you can use
to research data internals, such as the metamodel, model data, and model objects and
their properties.

Using erwinSpy.NET.x86.exe or erwinSpy.NET.x64.exe, you can open an *.erwin file by
clicking Open on the File menu. When a model is opened or selected from File menu,
model objects from the model are displayed in the left pane. You can view a model
object's hierarchy (parents and children) and properties by double-clicking on the
object.

You can access the model data and metamodel information from the Models menu. Use
the Models submenu to access the model data and the MetaModels, EM2 ModelSets,
EM2 ModelSets Meta submenus to access the metamodel data.

The add-in version of the sample program is erwinSpy_Addin.NET project. You can use
the erwinSpy_Addin.NET to create a 32-bit (erwinSpy_AddIn.NET.x86.dll) or 64-bit
(erwinSpy_AddIn.NET.x64.dll) add-in component. The add-in component runs when you
select it from the Tools, Add-Ins menu. After you build the add-in component with the
erwinSpy_Addin.NET project, you must register it.

22 API Reference Guide

The API Sample Client

Register the Add-in Component

After you build the add-in component with the erwinSpy_AddIn.NET project, you must
register it.

To register the add-in component

=

Navigate to the erwinSpy.NET\bin folder in the installation directory.

Copy the add-in component to the erwinSpy.NET\bin folder.

Rename the add-in depending on your operating environment.

m For a 32-bit application, rename the add-in to erwinSpy_AddIn.NET.x86.dll
m For a 64-bit application, rename the add-in to erwinSpy_AddIn.NET.x64.dll

Enter one of the following commands in the command prompt depending on your
operating environment.

m For a 32-bit application, enter register.bat 32
m For a 64-bit application, enter register.bat 64

The add-in component is registered.

Make a VB.NET Library COM Callable

The VB.NET library is not loaded automatically to erwin Data Modeler. You have to
make the VB.NET library COM callable.

Follow these steps:

1.

2
3.
4

Create a VB.NET library project in Visual Studio 2013.
Add a COM template class.
Right-click on Project and select Add, Component, COM class.

Copy the RegisterFunction, UnregisterFunction, and GetSubKeyNmae function from
erwinSpy.vb in erwinSpy_AddIn.NET project to the COM template class.

Add your public function which can be shared with other users.

The VB.NET library is now COM callable.

Chapter 2: API Components 23

erwin Spy

erwin Spy

The erwin Spy application visualizes metadata information and provides intrinsic and
model-specific metadata. It demonstrates the API functionality and provides a set of
useful features to study how model data is stored. erwin Spy reads the erwin DM
metamodel and simplifies the task of comprehending the intricate details of any erwin
DM model, which can be a complicated net of model objects, properties, and
cross-references. When you install erwin DM, you can choose to install the optional
erwin Spy utility.

There are two versions of the utility available in the erwin Spy.NET\bin folder, the
standalone version, erwinSpy.NET.exe, and the add-in version, erwinSpy_AddIn.NET.dlI.

These versions are identical in functionality and vary only in how you want to launch the
application. The standalone version runs without erwin DM present and can access
models stored in .erwin files, while the add-in version launches within erwin DM from
the Tools menu and can access models stored in either erwin DM memory or in .erwin
files.

Note: See the Add-In Manager online help for more information about defining an
add-in software application for the Tools, Add-Ins menu.

How the erwin Spy Application Works

To see how erwin Spy can help you visualize metadata information, do the following:
m Start with an empty logical-physical model.
m Click erwin Spy on the Tools, Add-Ins menu to launch erwin Spy.

Note: Ensure that you have added the erwin Spy application as a erwin DM add-in
application on the Tools, Add-Ins menu. See the Add-In Manager online help for
more information on defining an add-in software application.

m Select the top item on the Models menu in erwin Spy, which should be your empty
model.

m Double-click the Model object in the left pane to expand it. You should see a picture
similar to the following illustration:

There are many objects listed by erwin Spy. Even though the model is empty, you still
see objects there that represent erwin DM defaults, such as Domains, Main Subject
Area, Trigger Templates, and so on. All default objects are marked with a { Default; } flag
to the right of the type of the model object.

24 API Reference Guide

erwin Spy

The right pane of erwin Spy displays object properties. To see a specific object's
properties, select the object, click the button located in the center of the screen, and
the selected object's properties display in the right panel. The following illustration
shows the properties of a specific entity that was added to this model:

The first column shows property names, such as Name, Long ID, Type, Physical Name,
and so on.

The second column, DT, shows property datatypes, such as Str for a string, /4 for a
number, Bool for Boolean, Id for a reference to another object, and so on.

The third column, Value, displays the property value in native format.

The fourth column, As String, displays the property value reinterpreted as a string. To
understand this better, look at Physical Name in the left column. Its value in the Value
column is %EntityName(), which is a macro, while As String holds the macro expansion,
Entity_1.

The rest of the columns in the right pane represent property flags. The following list
describes the meaning of these columns:
NL
Displays properties with NULL/no value.
Note: The flag is never on for erwin Spy.
ub
Displays user-defined properties.
\'/e
Displays vector properties.
TL

Displays properties that are maintained by erwin DM and that cannot be changed
directly using the API.

RO
Displays read-only properties.
DR

Displays derived properties whose value was inherited (from a parent domain, for
example).

Facets True
Displays the facet value of a property that is set to True.
Facets False

Displays the facet value of a property that is set to False.

Chapter 2: API Components 25

erwin Spy

In the previous illustration, a primary key attribute named ATTRO1 was added to
Entity_1. It was migrated to Entity_2 by creating an identifying relationship. When you
double-click Entity_2, and then select ATTRO1, you can see how erwin Spy displays the
information. You can click the button in the center of the screen to view its properties
on the right.

Since the attribute for the Parent_Relationship_Ref property is a product of foreign key
migration, this property shows which relationship object is used to store data about it.
The value Id in the DT column shows that the property is a reference, which means that
the value is a unique ID of the involved relationship object.

Look at the name in the As String column or locate an object by its unique ID to traverse
back to the relationship object. To see object IDs, click Show Ids on the File, Options
menu. With this option enabled, when the cursor is positioned over an object in the left
panel, that object's unique ID is displayed in a popup window, as shown in the following
illustration:

Now compare the Parent_Relationship_Ref property with the Parent_Attribute_Ref and
the Master_Attribute_Ref properties. The Master_Attribute_Ref property is read-only.
This means that it is displayed for informational purposes only and cannot be changed
using the API. As you build your model, you can expand objects in the model to see how
erwin DM uses their properties to represent different relationships in the model.

Use the erwin Spy utility to see and understand the details of the data in a erwin DM
model that is available through the APL. If you need to learn how particular data is
represented in a erwin DM model, you can use the scenarios that were just described.
Start with an empty model, create the minimum model that is necessary to represent
the feature in question, and then use erwin Spy to look at the details of the data
representation.

26 API Reference Guide

Chapter 3: API Tasks

This chapter describes how to perform basic tasks using the API. Each task is
documented with a table that lists the interfaces and methods needed for that task. In
most cases, the table shows a subset of all the methods for that interface. A complete
list of APl interfaces and their methods is located in the appendix APl Interfaces
Reference (see page 99).

This section contains the following topics

API Environment (see page 27)

Creating the ISCApplication Object (see page 28)
Application Properties (see page 29)

Accessing a Model (see page 33)

Accessing Objects in a Model (see page 47)

Accessing Object Properties (see page 57)

Modifying the Model Using Session Transactions (see page 70)
Creating Objects (see page 73)

Setting Property Values (see page 75)

Deleting Objects (see page 78)

Deleting Properties and Property Values (see page 79)
Saving the Model (see page 82)

Accessing Metamodel Information (see page 83)
Closing the API (see page 85)

Error Handling (see page 87)
Advanced Tasks (see page 91)

APl Environment

The APl is packaged as a set of COM Dynamic Link Libraries (DLL) and works as a part of
a customer process. EAL.dll is responsible for launching the API environment. When
erwin DM is installed, EAL.dIl and the rest of the APl components are copied to the
erwin Data Modeler directory, and the installer registers the API with the System
Registry.

To use the API in a development environment, use the API Type Library embedded as a
resource in the EAL.dlI file. This operation is language specific. Consult your
development environment documentation for details.

Chapter 3: APl Tasks 27

Creating the ISCApplication Object

The API works in two different modes, standalone mode and add-in mode.

The APl is activated and controlled by a client application that hosts its own process in
the standalone mode.

In the add-in mode, the API is also activated and controlled by a client application, but
the client application is implemented as a COM DLL. The erwin DM executable owns a
process and all the client application DLLs run inside of that process. COM DLLs must be
registered with the System Registry and with the erwin DM Add-In Manager so that it
can be available for add-in mode activation.

Behavior of the API components in both modes is the same with a few exceptions that
are discussed further in this section.

The API is implemented as a tree of COM interfaces. The application exports the
top-level interface, from which the client fetches lower-level interfaces as needed.

Creating the ISCApplication Object

The entry point into the interface hierarchy of the API is through the ISCApplication
interface. The ISCApplication interface provides access to the persistence units and
sessions. You must create an instance of ISCApplication prior to using any of the other
interfaces in the API.

Example 1

The following example illustrates how to use C++ to create the ISCApplication object:

#import "EAL.dII" using namespace SCAPI;

ISCApplicationPtr scAppPtr;

HRESULT hr;

hr = scAppPtr.Createlnstance(__uuidof(SCAPI::Application));

The following example illustrates how to use Visual Basic .NET to create the
ISCApplication object:

Dim scApp As SCAPI.Application
scApp = New SCAPI.Application

// Or the alternative with the Progld

Dim oApp As Object
0App = CType(CreateObject("ewin9.SCAPI"), SCAPI.Application)

28 API Reference Guide

Application Properties

Application Properties

You can get information about the erwin DM application by using the following tables.

ISCApplication Interface

The following table contains information on the ISCApplication interface:

Signature Description Valid Arguments
BSTR Name() Modeling Application Title None
BSTR Version() Modeling Application Version None
BSTR ApiVersion() APl version None
ISCApplicationEnvironment Reports attributes of runtime None
ApplicationEnvironment() environment and available
features such as add-in mode, user
interface visibility, and so on
ISCPersistenceUnitCollection * Returns a collection of all None
PersistenceUnits() persistence units loaded in the
application.
ISCSessionCollection * Returns a collection of sessions None

Sessions()

created within the application

Chapter 3: API Tasks 29

Application Properties

ISCApplicationEnvironment

The following table contains information on the ISCApplicationEnvironment interface:

Signature Description Valid Arguments

ISCPropertyBag Populates a property bag Category:

PropertyBag(VARIANT with one or more property Empty — Complete set of features from all
Category[optional], VARIANT ~ Values as indicated by categories returned

Name[optional], VARIANT Category and Name

AsString[optional])

m VT_BSTR —Features returned from the
given category

Name:

m Empty — All properties from the selected
category are returned

m VT_BSTR - The property with the given
name and category returned
AsString:

m Empty — All values in the property bag are
presented in their native type

m VT_BOOL - If set to TRUE, all values in the
property bag are presented as strings

Feature categories in the Category parameter of the PropertyBag property are
hierarchical and use a dot (.) to define feature subsets. For example, the Application
category populates a property bag with a complete set of erwin DM features, while
Application.API provides a subset related to the API.

30 API Reference Guide

Application Properties

If the Category parameter is not set, then the PropertyBag property returns the
complete set of all the features from all the available categories.

Example 2

The following example illustrates how to use the API to retrieve the Application Features
using C++. It uses the Application object created in Example 1.

void IteratePersistenceUnits(ISCApplicationPtr & scAppPtr)

{
ISCPropertyBagPtr scBag;

// Retrieve all of application environment properties in one call

scBag = scAppPtr ->GetApplicationEnvironment()->GetPropertyBag();

// Get an array with categories by using empty string as a category name

scBag = scAppPtr ->GetApplicationEnvironment()->GetPropertyBag("", "Categories")

// Get Api Version value Application Api category
scBag = scAppPtr ->GetApplicationEnvironment()->GetPropertyBag ("Application.Api","Api Version")
}

Chapter 3: APl Tasks 31

Application Properties

The following example illustrates how to use the API to retrieve the Application Features
using Visual Basic .NET. It uses the Application object created in Example 1.

Public Sub GetApplicationFeatures(ByRef scApp As SCAPI.Application)
Dim scBag As SCAPI.PropertyBag
' Retrieve all of application environment properties in one call
scBag = scApp.ApplicationEnvironment.PropertyBag
' Retrieve values
PrintPropertyBag(scBag)
' Get an array with categories by using empty string as a category name
scBag = scApp.ApplicationEnvironment.PropertyBag("", "Categories")
' Retrieve a list of categories from the bag
Dim aCategories() As String
Dim CategoryName As Object
If IsArray(scBag.Value("Categories")) Then
' Retrieve an array
aCategories = scBag.Value("Categories")
If aCategories.Length >0 Then
' Retrieve values on category basis
For Each CategoryName In aCategories
' Get a property bag with values for the category
scBag = scApp.ApplicationEnvironment.PropertyBag(CategoryName)
Console.Writeline(" Values for the " + CategoryName +" category:")
' Retrieve values
PrintPropertyBag(scBag)
Next CategoryName
End If
End If
' Get Api Version value Application Api category
scBag = scApp.ApplicationEnvironment.PropertyBag("Application.Api", "Api Version")
' Retrieve values
PrintPropertyBag(oBag)
End Sub
' Retrieves and prints values from a property bag
Public Sub PrintPropertyBag(ByRef oBag As SCAPI.PropertyBag)
Dim ldx As Short
Dim nldx1 As Short
If Not (oBag Is Nothing) Then
For Idx=0To oBag.Count - 1
If IsArray(oBag.Value(ldx)) Then
' Retrieve an array
If oBag.Value(ldx).Length >0 Then
Console.WriteLine(Str(ldx) + ") " + oBag.Name(ldx) + " is an array: ")
For nldx1 =0 To UBound(oBag.Value(ldx))
Console.WriteLine(" " +oBag.Value(ldx)(nldx1).ToString)
Next nldx1
End If
Else
' Asingle value
Console.WriteLine(Str(ldx) +") " + oBag.Name(ldx) +" =" + oBag.Value(ldx).ToString)

32 API Reference Guide

Accessing a Model

End If

Next ldx
End If
End Sub

Accessing a Model

An API client accesses model data by working with a pool of available persistence units.
A persistence unit is the APl concept that describes all data related to a single model. A
persistence unit can be accessed and saved to persistence storage, such as a file or a
model in a mart. A client manipulates persistence units by using the Persistence Units
collection.

The existence of some persistence units in the application is dictated by a context in
which an instance of the application was created. For example, in standalone mode,
none of the units exist at launch time. Methods from the unit collection interface must
be used to accumulate units in the collection. In add-in component mode, the collection
contains all the units known to the erwin DM user interface at the time when the client
component is activated.

When the client program is terminated, the arrangement for the persistence units in
memory for standalone mode is that all units are closed. In add-in component mode,
after the client program has ended, the units are still open and available in the erwin
DM user interface with the exception of those that were explicitly closed and removed
from the persistence unit collection before exiting the program.

Note: For erwin DM, the collection is a snapshot. The collection includes only those
units that exist at the moment of collection construction (such as at the moment when
the PersistenceUnits method of the ISCApplication interface was called). An exception to
this is units added or deleted from the collection-these changes are reflected. All new
collections reflect the changes as well.

Using the API as an Add-in Tool

When the API client is a DLL that is invoked by clicking Add-Ins from the Tools menu, the
client runs within the environment of erwin DM. As a result, all the models that are
currently open within erwin DM are populated in the PersistenceUnits property of the
ISCApplication interface, when an instance of the interface is created.

To iterate through the models that are currently open in erwin DM, you can use the
ISCApplication interface, ISCPersistenceUnitCollection interface, and the
ISCPersistenceUnit interface, which are described in the sections that follow.

Chapter 3: APl Tasks 33

Accessing a Model

ISCApplication Interface

The following table contains information on the ISCApplication interface:

Signature Description Valid Arguments
ISCPersistenceUnitCollection Returns a collection of all None
PersistenceUnits() persistence units loaded in the

application

ISCPersistenceUnitCollection Interface

The following table contains information on the ISCPersistenceUnitCollection interface:

Signature Description Valid Arguments
ISCPersistenceUnit Passes back a pointer for the Index:
Persi i . .
[tem(VARIANT nindex)) er5|s.t.enceUT1|t component VT_UNKNOWN — A pointer to a session.
identified by its ordered
. Retrieves the persistence unit associated
position . .
with the session.
m VT_l4 —Index within the collection.
Collection index is from O to size-1.
Retrieves the persistence unit in the
collection with the given index.
m VT_BSTR—Application-wide unique
persistence unit identifier.
long Count() Number of persistence units None

in the collection

ISCPersistenceUnit Interface

The following table contains information on the ISCPersistenceUnit interface:

Signature Description Valid Arguments

BSTR Name() Returns the name of the None
persistence unit

SC_MODELTYPEID Objectld() Returns an identifier for the None
persistence unit

34 API Reference Guide

Accessing a Model

Signature Description Valid Arguments
ISCPropertyBag Returns a property bag with List:
PropertyBag(VARIANT the properties of the m VT_BSTR - Semicolon-separated list of

List[optional], VARIANT persistence unit

property names. Returns a property bag
AsString[optional])

with the unit properties in the given list.
AsString:

m VT_BOOL — Returns a property bag with all
values presented as strings if set to TRUE.
Otherwise, the values are presented in its
native format.

VARIANT_BOOL Returns TRUE if a unit has None
HasSession() one or more sessions

connected
VARIANT_BOOL IsValid() Returns TRUE is self is valid None

Property Bag Members for a Persistence Unit

The following table shows some property names and descriptions for property bag
members of an existing persistence unit.

Note: A complete set of available properties is located in the appendix APl Interfaces
Reference (see page 99).

Property Name Type Description

Locator BSTR Returns the location of the persistence unit,
such as file name. Not available for models
without a persistence location, such as new
models that were never saved.

Disposition BSTR Returns the disposition of the persistence unit,
such as read-only.

Persistence_Unit_Id SC_MODELTYPEID Retrieves an identifier for the persistence unit.

Model_Type Long Retrieves the type of the persistence unit, such
as logical, logical-physical, and physical models.

Target_Server Long Retrieves the target database properties for
Target_Server_Version physical and logical-physical models.
Target_Server_Minor_Version

Active_Model Boolean TRUE if the persistence unit represents the
current model and is active in the erwin DM
user interface. Not available for the APl in
standalone mode.

Chapter 3: APl Tasks 35

Accessing a Model

Property Name Type Description

Hidden_Model Boolean TRUE if a model window with the persistence
unit data is not visible in the erwin DM user
interface. Not available for the APl in
standalone mode.

Active_Subject_Area_and_Stored_Dis SAFEARRAY(BSTR) Reports names of active Subject Area and

play Stored Display model objects. This indicates the
Subject Area and Stored Display that erwin DM
shows on the screen. The returned value is a
safe-array with two elements. The first element
is a name for the active Subject Area and the
second element is for the Stored Display.

ISCPropertyBag Interface

The following table contains information on the ISCPropertyBag interface:

Signature Description Valid Arguments
long County() Returns the number of None

properties
VARIANT Value(VARIANT Retrieves the indicated Property:
Property) property in the bag

m VT_BSTR —Name of property. Value of
the property with the given name in the
property bag.

m VT_l4 —Zero-based property index.
Value of the property with the given
index in the property bag.

BSTR Name(long Retrieves the indicated None
Propertyldx) property name with the given

index. Range of indices is from

0 to size-1.

36 API Reference Guide

Accessing a Model

Example 3

The following example illustrates how to use the API as an add-in tool to iterate through
the open models using C++. The example uses the Application object created in Example
1:

void IteratePersistenceUnits(ISCApplicationPtr & scAppPtr)
{
ISCPersistenceUnitCollectionPtr scPUnitColPtr;
scPUnitColPtr = scAppPtr->GetPersistenceUnits();

ISCPersistenceUnitPtr scPUnit =0;
long ICnt = scPUnitColPtr->GetCount();

for(long i=0; i< ICnt; i++)

{
scPUnit = scPUnitColPtr->Getlitem(i);
CString csName = scPUnit->GetName(); // name of model
ISCPropertyBagPtr scPropBag = scPUnit->GetPropertyBag("Locator;Active Model");
long index=0;
CComVariant vPathName = scPropBag->GetValue(ColeVariant(index)); // full
//path of model
index=1;
CComVariant cActiveModel = scPropBag->GetValue(COleVariant(index)); // true if active model
/...

Chapter 3: APl Tasks 37

Accessing a Model

The following example illustrates how to use the API as an add-in tool to iterate through
the open models using Visual Basic .NET. The example uses the Application object
created in Example 1:

Public Sub IteratePersistenceUnits(ByRef scApp As SCAPI.Application)
Dim scPersistenceUnitCol as SCAPI.PersistenceUnits

Dim numUnits As Integer
Dim scPUnit As SCAPI.PersistenceUnit

scPersistenceUnitCol = scApp.PersistenceUnits

' Count open units
numUnits = scPersistenceUnitCol.Count
If (hnumUnits >0) Then
For Each scPUnit In scPersistenceUnitCol
Dim propBag As SCAPI.PropertyBag

propBag = scPUnit.PropertyBag("Locator")
Console.WriteLine(persUnit.Name) 'name of model
Console.WriteLine(propBag.Value(0)) ' full path of model
Next
End If
End Sub

Using the API as a Standalone Executable

When the API client is a standalone executable, the client runs outside the erwin DM
environment. As a result, when the ISCApplication interface is created, the
PersistenceUnits property is an empty collection. Even if erwin DM is running and there
are open models, the PersistenceUnits property is still empty because the API
environment is independent of the erwin DM environment. To get a valid persistence
unit, the API client needs to either create a new model or open an existing model.

38 API Reference Guide

Accessing a Model

Creating a Model

To create a new model using the API, you first need to create a new instance of
ISCPropertyBag. The ISCPropertyBag interface is a property bag that is used to hold the
properties of the new model. The following properties are used in creating a new
model.

Note: A complete set of properties is located in the appendix APl Interfaces Reference
(see page 99).

Property Name Type Description

Model_Type Long Sets the type of the persistence unit as follows:

m 1-Logical (for logical models; this is the default if no
type is provided)

m 2 —Physical (for physical models)
m 3 - Combined (for logical/physical models)

Target_Server Long Sets the target database properties for physical and
Target_Server_Version logical/physical models.
Target_Server_Minor_Version

Once the property bag is created and populated, a new persistence unit must be
created within the persistence unit collection.

ISCPersistenceUnitCollection Interface

The following table contains information on the ISCPersistenceUnitCollection interface:

Signature Description Valid Arguments

ISCPersistenceUnit * Creates a new unit, and registers the Objectld:

Create(ISCPropertyBag * unit with the collection .

PropertyBag, VARIANT Objectld = Empty=The API aSS|gns. aniDto
. the new persistence unit.

[optional])

m VT_BSTR—The API assigns the
given ID to the new persistence
unit.

Chapter 3: API Tasks 39

Accessing a Model

ISCPropertyBag Interface

The following table contains information on the ISCPropertyBag interface:

Signature Description Valid Arguments
VARIANT_BOOL Add(BSTR Name, Adds a new property to the bag Value:
VARIANT Value) All VARIANTs are valid. The function

returns TRUE if the property was
added to the bag, otherwise, it is
FALSE.

Example 4

The following example illustrates how to create a new persistence unit using C++. The
example uses the Application object created in Example 1:

ISCPersistenceUnitPtr CreateNewModel(ISCApplicationPtr & scAppPtr)
{

ISCPersistenceUnitCollectionPtr scPUnitColPtr;

scPUnitColPtr = scAppPtr->GetPersistenceUnits();

ISCPropertyBagPtr propBag;
HRESULT hr =propBag.Createlnstance(__uuidof(SCAPI::PropertyBag));
if (FAILED(hr))
return;
propBag->Add("Name", “Test Model”);
propBag->Add("ModelType", “Logical”);
ISCPersistenceUnitPtr scPUnitPtr = scPUnitColPtr->Create(propBag,vtMissing);
return scPUnitPtr;

The following example illustrates how to create a new persistence unit using Visual
Basic .NET. The example uses the Application object created in Example 1:

Public Function CreateNewModel(ByRef scApp As SCAPI.Application) As SCAPI.PersistenceUnit
Dim scPersistenceUnitCol as SCAPI.PersistenceUnits
scPersistenceUnitCol = scApp.PersistenceUnits

Dim propBag As New SCAPI.PropertyBag

propBag.Add("Name", "Test Model")

propBag.Add("ModelType", 0)

CreateNewModel = scPersistenceUnitCol.Create(propBag)
End Function

40 API Reference Guide

Accessing a Model

Opening an Existing Model

An existing erwin DM model is opened by adding a persistence unit to the persistence
unit collection (ISCPersistenceUnitCollection). When the API client is an add-in tool,
opening a model through the API also opens the model in the erwin DM user interface.

ISCPersistenceUnitCollection Interface

The following table contains information on the ISCPersistenceUnitCollection interface:

Signature

Description Valid Arguments

ISCPersistenceUnit * Add(VARIANT Adds a new persistence unit tothe Locator:

Locator, VARIANT Disposition unit collection

[optional])

m VT_BSTR —Full path to the
erwin DM model. This is the
model that is loaded into the
persistence unit.

Disposition:

m VT_BSTR—Arranges access
attributes, such as read-only.

Note: Detailed descriptions of the location and format of the Disposition parameters is
located in the appendix API Interfaces Reference (see page 99).

Example 5

The following example illustrates how to open an existing model using C++. The example
uses the Application object created in Example 1:

ISCPersistenceUnitPtr OpenModel(ISCApplicationPtr & scAppPtr, CString & csFullPath)
{

ISCPersistenceUnitCollectionPtr scPUnitColPtr;

scPUnitColPtr = scAppPtr->GetPersistenceUnits();

ISCPersistenceUnitPtr scPUnitPtr = scPUnitColPtr- >Add(COleVariant(csFullPath));

return scPUnitPtr;

The following example illustrates how to open an existing model using Visual Basic .NET.
The example uses the Application object created in Example 1:

Public Function OpenModel(ByRef scApp As SCAPI.Application, _
fullModelPath As String) As SCAPI.PersistenceUnit
Dim scPersistenceUnitCol as SCAPI.PersistenceUnits

scPersistenceUnitCol = scApp.PersistenceUnits

OpenModel = scPersistenceUnitCol. Add(fullModelPath)
End Sub

Chapter 3: APl Tasks 41

Accessing a Model

Opening a Session
Before the objects of a model can be accessed using the API, an ISCSession instance
must first be established for the ISCPersistenceUnit of the model. To open a session for a

persistence unit, add a new ISCSession to the ISCSessionCollection, and then open the
ISCPersistenceUnit in the new session.

ISCSessionCollection Interface

The following table contains information on the ISCSessionCollection interface:

Signature Description Valid Arguments

ISCSession * Add() Constructs a new, closed Session None
object, and adds it to the collection

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Arguments
VARIANT_BOOL Binds self to the persistence Unit:
Open(lUnknown * Unit, unit identified by the Unit

Pointer to a persistence unit that was loaded.

VARIANT Level ti 1, t . . .
evel [optional] parameter Attaches the persistence unit to the session.

VARIANT Flags [optional])
Level:

m Empty — Defaults to data level access
(SCD_SL_MoO).

m SCD_SL_MO - Data level access.

Flags:

m Empty — Defaults to SCD_SF_NONE.

m SCD_SF_NONE — Specifies that other sessions
can have access to the attached persistence
unit.

m SCD_SF_EXCLUSIVE - Specifies that other
sessions cannot have access to the attached
persistence unit.

42 API Reference Guide

Accessing a Model

Example 6

The following example illustrates how to open a session using C++. The example uses
the Application object created in Example 1 and the CreateNewModel function from
Example 4:

ISCSessionPtr OpenSession(ISCApplicationPtr & scAppPtr)

{
ISCSessionCollectionPtr scSessionColPtr = scAppPtr->GetSessions();
ISCSessionPtr scSessionPtr = scSessionColPtr->Add(); // add a new session
ISCPersistenceUnitPtr scPUnitPtr = CreateNewModel(scAppPtr); // From Example 4

CComVariant varResult = scSessionPtr->Open(scPUnitPtr, (long) SCD_SL_MO); // open unit
if (varResult.vt == VT_BOOL && varResult.boolVal == FALSE)

return NULL;
return scSessionPtr;

The following example illustrates how to open a session using Visual Basic .NET. The
example uses the Application object created in Example 1 and the CreateNewModel
function from Example 4:

Public Function OpenSession(ByRef scApp As SCAPI.Application) As SCAPI.Session
Dim scSessionCol As SCAPI.Sessions
Dim scPUnit As SCAPI.PersistenceUnit
scSessionCol = scApp.Sessions
OpenSession = scSessionCol.Add 'new session

scPUnit = CreateNewModel(scApp) ' From Example 4
scSession.Open(scPUnit, SCD_SL_MO) ' open the persistence unit
End Sub

Chapter 3: APl Tasks 43

Accessing a Model

Accessing a Model Set

A persistence unit contains data as a group of linked model sets. The model sets are
arranged in a tree-like hierarchy with a single model set at the top.

The top model set in a persistence unit contains the bulk of modeling data. The erwin
DM API uses the abbreviation EMX to identify the top model set.

The EMX model set owns a secondary model set, abbreviated as EM2, that contains user
options and user interface settings.

The ISCSession interface allows you to open the top model set by simply providing a
pointer to the ISCPersistenceUnit interface in ISCSession::Open call.

It is possible to iterate over all model sets constituting a persistence unit. While
iterating, a pointer to the ISCModelSet interface can be used to open a session with the
particular model set. This is done by submitting the pointer to ISCSession::Open call as
the first parameter, instead of a persistence unit.

The ModelSet property of the ISCPersistenceUnit interface provides the starting point
for iteration over a persistence unit's model sets. The use of the OwnedModelSets
property of ISCModelSet allows you to iterate over the next level of model sets in the
persistence unit.

ISCPersistenceUnit Interface

The following table contains information on the ISCPersistenceUnit interface:

Signature

Description Valid Arguments

ISCModelSet * ModelSet()

Passes back a pointer on the None
top model set in the
Persistence Unit.

ISCModelSet Interface

The following table contains information on the ISCModelSet interface:

Signature

Description Valid Arguments

ISCModelSetCollection *
OwnedModelSets()

Provides a collection with directly None
owned model sets.

44 APl Reference Guide

Accessing a Model

ISCModelSetCollection Interface

The following table contains information on the ISCModelSetCollection interface:

Signature Description

Valid Arguments

ISCModelSet *

Item(VARIANT nindex) ModelSet component.

Passes back a pointer for a

nindex:

VT_l4 - Index of a model set in the model set
collection. The index is zero-based.

VT_BSTR — Model set identifier.

VT_BSTR — Class identifier for metadata
associated with a model set.

VT_BSTR — Class name for metadata associated
with a model set.

Note: For information about metadata class identifiers and names, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin® Data Modeler installation folder.

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description

Valid Arguments

VARIANT_BOOL Binds self to the model set
Open(lUnknown * identified by the ModelSet
ModelSet, VARIANT Level parameter

[optional], VARIANT Flags

[optional])

ModelSet:

m Pointer to a model set from a persistence unit
that was loaded. Attaches the model set to the
session.

Level:

m Empty — Defaults to data level access
(SCD_SL_Mo).

m SCD_SL_MO - Data level access.
Flags:
m Empty — Defaults to SCD_SF_NONE.

m SCD_SF _NONE - Other sessions can have access
to the attached persistence unit.

m SCD_SF_EXCLUSIVE — Other sessions cannot
have access to the attached persistence unit.

Chapter 3: API Tasks 45

Accessing a Model

Example 7

The following example illustrates how to open a session with the EM2 model of a
persistence unit using C++. The example uses the Application object created in Example
1 and the CreateNewModel function from Example 4:

PERRRRRR

| Ed Ed E4 Ed Ed Fd Ed Ed Ed E4 4 Ed Ed Ed Ed 4 4 Ed Ed 4 B4 Ed B4 4 Ed Ed B4 E B

B

| £ £ Ed Ed E4 E4 E4 Ed Ed 4 Ed E4 Fd Ed Ed Ed Ed Fd Ed Ed Ed Ed Ed Fd Ed Ed Ed Ed Ed Ed Ed Ed Ed Ed Ed Ed Ed E4 Ed 4 4 4 E4 S S Ed Ed Fd Ed Ed Ed Ed Fd Fd Ed Ed B Fd Ed Ed Ed Ed Ed Ed B Ed Ed Fd I I Fd 4 I 4 d 4 4 S S

| Ed Ed E Ed Ed F4 E4 4 Ed Ed 4 Fd Fd Fd Ed Ed Fd Fd Fd Ed B B B B B R R R R W A R R R R R R R

| Ed Ed E4 Ed Ed Fd Ed Ed Ed E4 4 Ed Ed Ed Ed 4 4 Ed Ed 4 Ed Ed 4 E4 Ed Ed Ed Ed Ed 4 Ed Ed E4 B4 Ed Ed 4 Ed Ed Ed Ed Ed 4 B Ed 4 Ed Ed 4 Ed Ed 4 4 Ed Ed B4 Ed Ed Ed BB 4 B B

RRRER
PRRRRRRR...

The following example illustrates how to open a session with the EM2 model of a
persistence unit using Visual Basic .NET. The example uses the Application object
created in Example 1 and the CreateNewModel function from Example 4:

| Ed 4 Ed Ed Ed Fd Ed Ed Ed E4 4 Ed Ed Ed Ed Ed 4 Ed Ed 4 Ed Ed 4 Ed Ed Ed Ed Ed Ed 4 Ed Ed E4 4 Ed Ed Ed Ed Ed 4 Ed Ed 4 B Ed Ed B Ed 4 B E B)

EHHEE]

PN NP 202 202 222 2 2 202 2) 2020 212 21 2L 21 2N 20 21 21 24202020 2

PPN A2 202 P02 202 2 2 2 202 2 20 2N 212 21 20 21 2 21 21 21 24 2120 2 21 21 21 2120)

PPN A2 202 P02 202 2 2 2 202 2 20 2N 212 21 20 21 2 21 21 21 24 2120 2 21 21 21 2120)

| Ed Ed E4 Ed Ed Fd Ed Ed Ed E4 4 Ed Ed Ed Ed Ed 4 Ed Ed 4 Ed Ed 4 Ed Ed Ed Ed Ed 4 4 Ed Ed Ed 4 Ed Ed B4 E B

PN PP 2 2 202202 2 2 2 20220 202N 212 21 21 21 2 21 21 21 21 21202

| Ed 4 Ed Ed Ed Fd Ed Ed Ed E4 4 Ed Ed Ed Ed Ed 4 Ed Ed 4 Ed Ed 4 Ed Ed Ed Ed Ed Ed 4 Ed Ed E4 4 Ed Ed Ed Ed Ed 4 Ed Ed 4 B Ed Ed B Ed 4 B E B)

HHEE

| Ed Ed Ed Ed Ed Ed Ed Ed Ed Ed E4 Ed Ed Ed Fd 4 4 Ed Ed 4 Ed Ed 4 Ed Ed Ed Ed Ed Ed B4 Fd Ed 4 Ed Ed Ed Ed Ed Ed 4 Ed Ed B4)

IR P02 202 202 202 2 2 2 2 2 2 2 2 2 2 2 2N 21 2 2L 2L 2L A 222 22))

| Ed Ed Ed Ed F4 4 4 4 Ed Ed Fd Ed Fd Ed Ed Ed Ed Fd Fd Ed Ed Ed Fd Ed Ed Ed Ed Ed Ed 4 Ed Ed Ed E4 Ed Ed Ed 4 Ed 4 4 B4 Ed B BB R T

| d Ed Ed Ed Ed F4 E4 4 4 Ed Ed Fd Ed Fd Ed Fd Ed Ed Fd Fd Fd Ed Ed Ed Ed Ed Ed Ed Ed Ed E4 Ed Ed Ed Ed Ed 4 Ed E4 Ed Ed 4 Ed 4 Ed S B B EE B BB R

46 API Reference Guide

Accessing Objects in a Model

Accessing Objects in a Model

You can access model objects through the ModelObjects property in an active ISCSession
instance. The ModelObjects property is a collection of all model objects associated with
the persistence unit of the session. The ModelObjects property is an instance of the
ISCModelObjectCollection. lteration through an instance of ISCModelObjectCollection is
done in a depth-first fashion, and returns instances of ISCModelObject.

The following sections describe the interfaces used to access model objects.

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Arguments
ISCModelObjectCollection * Creates a ModelObject collection for None
ModelObjects() the session

ISCModelObjectCollection Interface

The following table contains information on the ISCModelObjectCollection interface:

Signature Description Valid Arguments
long Count() Number of objects in the collection None
IUnknown _NewEnum() Constructs an instance of the None

collection enumerator object

ISCModelObject Interface

The following table contains information on the ISCModelObject interface:

Signature Description Valid Arguments

BSTR ClassName() Returns the class name of the None
current object

SC_OBIJID Objectld() Uniquely identifies the current None
object

Chapter 3: APl Tasks 47

Accessing Objects in a Model

Signature Description Valid Arguments

BSTR Name() Returns the name or a string None
identifier of the current object

SC_CLSID Classld() Returns the class identifier of the None
current object
ISCModelObject * Context() Passes back the context (parent) of None
the object
Example 8

The following example illustrates how to access model objects using C++. The example
uses the Application object created in Example 1 and the OpenSession function from
Example 6:

void IterateObjects(ISCApplicationPtr & scAppPtr)
{
ISCSessionPtr scSessionPtr = OpenSession(scAppPtr); // From Example 6
//Make sure the Session Ptris Open
if(!scSessionPtr->IsOpen())
{
AfxMessageBox("Session Not Opened");
return;
}
ISCModelObjectCollectionPtr scModelObjColPtr = scSessionPtr >GetModelObjects();
IUnknownPtr _NewEnum = NULL;
IEnumVARIANT* ObjCollection;

_NewEnum =scModelObjColPtr ->Get_NewEnum();
if (_NewEnum !=NULL)
{
HRESULT hr =_NewEnum->Querylinterface(IID_IEnumVARIANT, (LPVOID*) &ObjCollection);
if (IFAILED(hr))
{
while (S_OK == ObjCollection->Next(1,&xObject,NULL))
{
ISCModelObjectPtr pxitem = (V_DISPATCH (&xObject));
//1SCModelObject in xObject was AddRefed already. All we need is to
//attach it to a smart pointer
xObject.Clear();
// Process the ltem
CString csName = (LPSTR) pxltem->GetName();
CString csID = (LPSTR) pxitem->GetObjectld();
CString csType = (LPSTR) pxltem->GetClassName();
/.

48 API| Reference Guide

Accessing Objects in a Model

if (ObjCollection)
ObjCollection->Release();

The following example illustrates how to access model objects using Visual Basic .NET.
The example uses the Application object created in Example 1 and the OpenSession
function from Example 6:

Public Sub IterateObjects(ByRef scApp As SCAPI.Application)
Dim scSession As SCAPI.scSession
Dim scModelObjects As SCAPI.ModelObjects
Dim scObj As SCAP1.ModelObject

scSession = OpenSession(scApp) ' From Example 6
' Make sure that the session is open
If scSession.IsOpen() Them

scModelObjects = scSession.ModelObjects

For Each scObj In scModelObjects
Console.WriteLine(scObj.Name)
Console.WriteLine(scObj.Objectld)
Dubug.WriteLine(scObj.ClassName)

Next

End If
End Sub

Accessing a Specific Object

You can directly access model objects in an ISCModelObjectCollection instance by using
the Item method of the interface.

Chapter 3: API Tasks 49

Accessing Objects in a Model

ISCModelObjectCollection Interface

The following table contains information on the ISCModelObjectCollection interface:

Signature Description Valid Arguments

ISCModelObject * Returns an I[Unknown pointer nindex:

[tem(VARIANT nindex, for a Model Object component .
VT_UNKNOWN — Pointer to th

VARIANT Class [optional]) identified by the nindex -U 0 ointerto the

ISCModelObject interface. Given object is

arameter .
P returned from the collection.

m VT_BSTR-ID of an object. The object with the
given identifier is returned from the collection.

m VT_BSTR —Name of an object. If the name of
an object is used, the Class parameter must
also be used. The object with the given name
and given Class type is returned from the
collection.

Class:

m Empty — The object specified by nindex is
returned from the collection.

m VT_BSTR — Name of a class. Must be used if
the nindex parameter is the name of an object.
Returns the object with the given name and
given Class.

m VT_BSTR —Class ID of object type. Must be
used if the nindex parameter is the name of an
object. Returns the object with the given name
and given Class identifier.

Note: For information about valid object class names and identifiers, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin Data Modeler installation folder.

Example 9

The following example illustrates how to access a specific object using C++. The example
uses a Session object from Example 6:

void GetObject(ISCSessionPtr & scSessionPtr, CString & csID)

{
1SCModelObjectCollectionPtr scModelObjColPtr = scSessionPtr->GetModelObjects();
ISCModelObjectPtr scObjPtr = scModelObjColPtr->Getltem(COleVariant(csID));
/...

}

50 API Reference Guide

Accessing Objects in a Model

The following example illustrates how to access a specific object using Visual Basic .NET.
The example uses a Session object from Example 6:

Public Sub GetObject(ByRef scSession As SCAPI.Session, ByRef objID As String)
Dim scObjCol as SCAPI.ModelObjects
Dim scObj as SCAPI.ModelObject

scObjCol = scSession.ModelObjects

scObj = scObjCol.ltem(objID) ' retrieves object with given object ID
End Sub

Filtering Object Collections

You can create subsets of a collection by using ISCModelObjectCollection::Collect
method. The Collect method creates a new instance of the Model Objects collection
component based on the filtering criteria specified in the parameters of the method.
The filtering criteria is optional, and any number of combinations of criteria can be used.

Chapter 3: APl Tasks 51

Accessing Objects in a Model

ISCModelObjectCollection Interface

The following table contains information on the ISCModelObjectCollection interface:

Signature Description Valid Arguments

ISCModelObjectCollection * Creates a Model Objects Root:

Collect(VARIANT Root, VARIANT :‘llbekfctglr;’c‘:i'sr']czfr; ‘:;Tfse”ts VT_UNKNOWN — ISCModelObject pointer
Classid [op’FlonaI], VARIANT) of the root object. Returns the descendants
Depth [optlonal'], VARIANT The method creates a valid of the given object.

MustBeOn [optional], VARIANT collection even though the

MustBeOff [optional]) collection may be empty. m VT_BSTR —The Object ID of the root object.

Returns the descendants of the object with
the given object identifier.

Classld:

VT_ARRAY|VT_BSTR — SAFEARRAY of class
IDs. Returns the descendants of the root
with the given object class identifiers.

VT_ARRAY|VT_BSTR — SAFEARRAY of class
names. Returns the descendants of the root
with the given object class name.

VT_BSTR — Class ID. Returns the
descendants of the root with the given
object class identifier.

VT_BSTR — Semicolon delimited list of class
IDs. Returns the descendants of the root
with the given class identifiers.

VT_BSTR — Class name. Returns the
descendants of the root with the given class
name.

VT_BSTR — Semicolon delimited list of class
names. Returns the descendants of the root
with the given class names.

Empty — Returns all descendants regardless
of class type.

52 API Reference Guide

Accessing Objects in a Model

Signature

Description Valid Arguments

Depth:

m VT_I4 — Maximum depth. Returns the
descendants of the root at a depth no more
than the given depth. A depth of -1
represents unlimited depth.

m Empty — Returns all descendants of the root
(unlimited depth).
MustBeOn:

m VT_l4 —Returns the descendants of the root
with the given object flags set.

m Empty — Defaults to
SCD_MOF_DONT_CARE.
MustBeOff:

m VT_l4 —Returns the descendants of the root
that do not have the given object flags set.

m Empty — Defaults to
SCD_MOF_DONT_CARE.

Note: For information about valid object class names and identifiers, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin Data Modeler installation folder. More information about
SC_ModelObjectFlags is located in the appendix API Interfaces Reference (see page 99).

The following sections show the code examples for the different filters.
Example 10

The following example illustrates the Object Type filter using C++. The example uses the
Session object from Example 6 and creates a collection of objects of csType type, owned
by the rootObj object:

void FilterObjects(ISCSessionPtr scSessionPtr, ISCModelObjectPtr & rootObj,

CString & csType)

{
ISCModelObjectCollectionPtr scModelObjectsPtr;

scModelObjectsPtr = scSessionPtr->GetModelObjects()->Collect(rootObj->GetObjectld(), COleVariant(csType));
/...

}

Chapter 3: APl Tasks 53

Accessing Objects in a Model

The following example illustrates the Object Type filter using Visual Basic .NET. The
example uses the Session object from Example 6 and creates a collection of objects of
csType type, owned by the rootObj object:

Public Sub FilterObjects(ByRef scSession As SCAPI.Session, _
ByRef rootObj As SCAPI.ModelObject, ByRef objType as String)

Dim scModelObjects As SCAPI.ModelObjects
scModelObjects = scSession.ModelObject.Collect(rootObyj, objType)
' scModelObjects will contain only objects of type objType

End Sub
Example 11

The following example illustrates the Depth filter using C++:

void FilterObjects(ISCSessionPtr scSessionPtr, ISCModelObjectPtr & rootObj,
CString & csType, long depth)
{
ISCModelObjectCollectionPtr scModelObjectsPtr;
scModelObjectsPtr = scSessionPtr->GetModelObject()->
Collect(rootObj->GetObjectld(), COleVariant(csType),depth);
/-
}

The following example illustrates the Depth filter using Visual Basic .NET:

Public Sub FilterObjects(ByRef scSession As SCAPI.Session, _
ByRef rootObj As SCAPI.ModelObject, ByRef classID As String, depth As Integer)

Dim scModelObjects As SCAPl.ModelObjects
scModelObjects = scSession.ModelObjects.Collect(rootObj, classID, depth)

End Sub
Example 12

The following example illustrates the MustBeOn/MustBeOff filter using C++. The
example uses the Session object from Example 6:

void FilterObjects(ISCSessionPtr scSessionPtr, ISCModelObjectPtr & rootObj, long depth)
{
ISCModelObjectCollectionPtr scModelObjectsPtr;
scModelObjectsPtr = scSessionPtr->GetModelObjects()->
Collect(rootObj->GetObjectld(), vtMissing, depth, SCD_MOF_USER_DEFINED);
/e

54 API Reference Guide

Accessing Objects in a Model

The following example illustrates the MustBeOn/MustBeOff filter using Visual Basic
.NET. The example uses the Session object from Example 6:

Public Sub FilterObjects(ByRef scSession As SCAPI.Session, _
ByRef rootObj As SCAPI.ModelObject, depth As Integer)

Dim scModelObjects As SCAPI.ModelObjects
scModelObjects = scSession.ModelObjects.Collect(rootObyj, , depth, SCO_MOF_USER_DEFINED)

End Sub

The following example illustrates how to create a note through API:

Sub updateAttribute()

' This Creates an Instance of SCApplication

Set SCApp = CreateObject("erwin9.SCAPI")

'Declare a variable as a FileDialog object.
Dim fd As FileDialog
'Create a FileDialog object as a File Picker dialog box.

Set fd = Application.FileDialog(msoFileDialogFilePicker)

fd.AllowMultiSelect = False
fd.Filters.Clear
fd.Filters.Add "erwin File", "*.erwin", 1
If (fd.Show =-1) Then

strFileName = fd.SelectedItems.ltem(1)
Else

Exit Sub

End If

Chapter 3: APl Tasks 55

Accessing Objects in a Model

'Set the object variable to Nothing.

Set fd = Nothing

'strFileName = "C:\models\test03.erwin"

' This is the name of the .erwin Model that needs to be updated

Set SCPUNIt = SCApp.PersistenceUnits.Add("erwin://" & strFileName)

Set SCSession = SCApp.Sessions.Add

SCSession.Open (SCPUnit)

Set SCRootObj = SCSession.ModelObjects.Root

Set SCEntObjCol = SCSession.ModelObjects.Collect(SCRootObj, "Entity")
Dim nTransld

nTransld = SCSession.BeginNamedTransaction("Test")

For Each oEntObject In SCEntObjCol
On Error Resume Next
Set oEntCol = SCSession.ModelObjects.Collect(oEntObject, "Attribute™)
For Each oAttObject In oEntCol

Set oUserNote = SCSession.ModelObjects.Collect(oAttObject).Add("Extended_Notes")
oUserNote.Properties("Comment").Value = "Test note1"
oUserNote.Properties("Note_Importance").Value="0" 'enum{0|1|2|3|4|5}
oUserNote.Properties("Status").Value ="1" 'enum {1123}

Next oAttObject

Next oEntObject

56 API Reference Guide

Accessing Object Properties

SCSession.CommitTransaction (nTransld)

SCSession.Close

' Save the model
Call SCPUnit.Save("erwin://" & strFileName)
MsgBox "Incremental-Save successfully"

SCApp.Sessions.Remove (SCSession)
SCApp.PersistenceUnits.Clear
SCPUnit = Null

SCSession = Null

End Sub

Accessing Object Properties

You can access the properties of an object through the Properties property of
ISCModelObject. The Properties property is an instance of ISCModelPropertyCollection.
The ISCModelPropertyCollection contains instances of ISCModelProperty.

Iteration of Properties

This section describes the interfaces involved with the iteration of properties.

Chapter 3: APl Tasks 57

Accessing Object Properties

ISCModelObject Interface

The following table contains information on the ISCModelObject interface:

Signature Description Valid Arguments

ISCModelPropertyCollection * Properties() Returns a property collection of all None
available properties

ISCModelPropertyCollection Interface

The following table contains information on the ISCModelPropertyCollection interface:

Signature Description Valid Arguments
Long Count() Number of properties in the None

collection
IUnknown _NewEnum() Constructs an instance of the None

collection enumerator object

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature Description Valid Arguments
BSTR ClassName() Returns the class name of the None
property
SC_CLSID Classld() Returns the class identifier of the None
property
Long Count() Contains the number of values in None

the property

BSTR FormatAsString() Formats the property value as a None
string

58 API Reference Guide

Accessing Object Properties

Example 13

The following example illustrates the iteration of properties using C++. The example
uses a Model Object object from Example 9:

void IterateObjectProperties(ISCModelObjectPtr & scObjPtr)

{
ISCModelPropertyCollectionPtr propColPtr = scObjPtr->GetProperties();

// lterate over the Collection
IUnknownPtr _NewEnum = NULL;
IEnumVARIANT* propCollection;

_NewEnum = propColPtr->Get_NewEnum();
if (_NewEnum !=NULL)
{
HRESULT hr =_NewEnum->Querylnterface(lID_IEnumVARIANT, (LPVOID*) &propCollection);
if (IFAILED(hr))
{
COleVariant xObject;
while (S_OK == propCollection->Next(1,&xObject,NULL))
{
ISCModelPropertyPtr scObjPropPtr = (V_DISPATCH (&xObject));
xObject.Clear();
if (scObjPropPtr.GetInterfacePtr())
{
CString csPropName = (LPSTR) scObjPropPtr->GetClassName();
CString csPropVal= (LPSTR) scObjPropPtr->FormatAsString();
/..
}
} // property iteration
}
if (propCollection)
propCollection->Release();

Chapter 3: API Tasks 59

Accessing Object Properties

The following example illustrates the iteration of properties using Visual Basic .NET. The
example uses a Model Object object from Example 9:

Public Sub IterateObjectProperties(ByRef scObj As SCAPI.ModelObject)

Dim scObjProperties As SCAPl.ModelProperties

Dim scObjProp As SCAPI.ModelProperty

scObjProperties = scObj.Properties

For Each scObjProp In scObjProperties
Debug.WriteLine(scObjProp.ClassName)
Console.WriteLine(scObjProp.Name)

Next

End Sub

60 API Reference Guide

Accessing Object Properties

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature

Description Valid Arguments

long Count()

Contains the number of values in None
the property.

For scalar properties, the number of

values in the property is always one.

It is possible to have a non-scalar
property with no elements. In this
case, the number of values in the
property will be zero.

SC_ModelPropertyFlags Flags()

Returns the flags of the property. None

VARIANT Value(VARIANT Valueld
[optional], VARIANT ValueType
[optional])

Retrieves the indicated property Valueld:

value in the requested format. .
q m Empty - Valid for a scalar

property only.

m VT_l4 —Zero-based index within
a homogeneous array. The
value of the member indicated
by this index is returned.

ValueType:

m Empty —Indicates a native
datatype for a return value.

m SCVT_DEFAULT —Indicates a
native datatype for a returned
value.

m SCVT_BSTR - Requests
conversion to a string for a
returned value.

Chapter 3: APl Tasks 61

Accessing Object Properties

Note: More information about SC_ModelPropertyFlags is located in the Enumerations
(see page 153) section. More information about property datatypes is located in the
SC ValueTypes (see page 156) section.

Example 14

The following example illustrates how to access scalar property values using C++. The
example uses a Model Property object from Example 13:

void GetScalarProperty(ISCModelPropertyPtr & scObjPropPtr)
{
if (scObjPropPtr->GetCount() <= 1)
{
_bstr_t bstrPropVal= scObjPropPtr->FormatAsString();
e
}
}

The following example illustrates how to access scalar property values using Visual Basic
.NET. The example uses a Model Property object from Example 13:

Public Sub GetPropertyElement(ByRef scObjProp As SCAPI.ModelProperty)

If (scObjProp.Flags And SCAPI.SC_ModelPropertyFlags.SCD_MPF_NULL) Then
Console.WriteLine("The value is Null")
Else
If (scObjProp.Flags And SCAPL.SC_ModelPropertyFlags.SCD_MPF_SCALAR) Then
Console.WriteLine(scObjProp.Value.ToString())
Else
For j =0 To scObjProp.Count-1
Console.WriteLine(scObjProp.Value(j). ToString())
Next
End If
End If

End Sub

Iterating Over Non-Scalar Property Values

The properties that contain multiple values (either homogeneous or heterogeneous) are
non-scalar properties. To access the individual values of a non-scalar property, the
PropertyValues member of the ISCModelProperty interface is used. The PropertyValues
member is an instance of ISCPropertyValueCollection. Each member of
ISCPropertyValueCollection is an instance of ISCPropertyValue. The Valueld member of
the ISCPropertyValue interface identifies the individual property values in a non-scalar
property. Valueld can either be a zero-based index or the name of the non-scalar
property value member if the property type is a structure.

62 API Reference Guide

Accessing Object Properties

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature Description Valid Arguments

ISCPropertyValueCollection * Returns the values for the property None
PropertyValues()

ISCPropertyValueCollection Interface

The following table contains information on the ISCPropertyValueCollection interface:

Signature Description Valid Arguments
long Count() Number of values in the collection None
IUnknown _NewEnum() Constructs an instance of the None

collection enumerator object

ISCPropertyValue Interface

The following table contains information on the ISCPropertyValue interface:

Signature Description Valid Arguments
VARIANT Valueld(VARIANT ValueType Uniquely identifies the valueina ValueType:
[optional]) non-scalar property.

m SCVT_I2 —If the property is
non-scalar, the value of the
property index is returned.

m SCVT_l4 —If the property is
non-scalar, the value of the
property index is returned.

m SCVT_BSTR —The name of
the non-scalar property
member if it is available, or
else the index of the
member is returned.

m SCVT_DEFAULT —If the
property is non-scalar, the
value of the property index
is returned.

m Empty — Defaults to
SCVT_DEFAULT.

Chapter 3: APl Tasks 63

Accessing Object Properties

Signature Description Valid Arguments
SC_CLSID PropertyClassld() Returns the class identifier of the None
current property
BSTR PropertyClassName() Returns the class name of the None
current property
VARIANT Value(VARIANT ValueType Converts the current value to the ValueType:

[optional])

passed value type.

m SCVT_DEFAULT —Indicates a
value in the native format.

m SCVT_BSTR - String
representation of the
property value.

m Target Type — Identifies a
target for a type conversion.

m Empty — Defaults to
SCVT_DEFAULT.

SC_ValueTypes ValueType() Passes back the identifier of the None
value default type
SC_ValueTypes ValueldType() Passes back the identifier of the None
value identifier default type
SC_ValueTypes * Groups a list of supported value None
GetSupportedValueTypes() types and returns it as a
SAFEARRAY
SC_ValueTypes * Groups a list of supported value None

GetSupportedValueldTypes()

types for the current value
identifier and returnsit as a
SAFEARRAY

64 API Reference Guide

Accessing Object Properties

Note: More information about value datatypes is located in the SC_ValueTypes (see
page 156) section.

Example 15

The following example illustrates how to access non-scalar property values using C++.
The example uses a Model Property object from Example 13:

void IterateNonScalarProperties(ISCModelPropertyPtr & scObjPropPtr)
{
if (scObjPropPtr->GetCount() > 1)
{
ISCPropertyValueCollectionPtr propVals = scObjPropPtr->GetPropertyValues();
long numVals = propVals->GetCount();
for (longi=0; i < numVals; i++)
{
ISCPropertyValuePtr propValPtr = propVals->Getltem(COleVariant(i));
VARIANT valType;
V_VT(&valType) =VT_l4;
V_I4(&valType) = SCVT_BSTR;
bstr_t bstrPropVal = propValPtr->GetValue(valType);

/e

The following example illustrates how to access non-scalar property values using Visual
Basic .NET. The example uses a Model Property object from Example 13:

Public Sub IterateNonScalarProperties(ByRef scObjProp As SCAPI.ModelProperty)
Dim scPropValue as SCAPI.PropertyValue

If (scObjProp.Count > 1) Then
For Each scPropValue In scObjProp.PropertyValues
If (scPropValue.ValueldType = SCVT_BSTR) Then
Console.WriteLine(scPropValue.Valueld(SCVT_BSTR),": ", _
scPropValue.Value.ToString())
Else
Console.WriteLine (scPropValue.Value.ToString())
End If
Next
End If
End Sub

Chapter 3: APl Tasks 65

Accessing Object Properties

Accessing a Specific Property

For non-scalar properties, you can directly access individual values by using the /tem
method of ISCPropertyValueCollection.

ISCPropertyValueCollection Interface

The following table contains information on the ISCPropertyValueCollection interface:

Signature Description Valid Arguments
ISCPropertyValue * Item(VARIANT Returns a single value from the Valueld:
Valueld) property value collection

m VT_l4 —Index of the member in
a non-scalar property.

m VT_BSTR — Name of a member
in a non-scalar property.

Note: For r7.3, erwin DM does not support naming of non-scalar property members.
Example 16

The following example illustrates how to access a specific property using C++. The
example uses a Model Object object from Example 9:

// This function retrieves a specific value with the given index from the property with the
// given name.
ISCPropertyValuePtr GetPropValue(ISCModelObjectPtr & scObjPtr, CString & csName, int index)
{
ISCModelPropertyCollectionPtr propColPtr = scObjPtr->GetProperties();
ISCModelPropertyPtr scObjPropPtr = propColPtr->Getltem(COleVariant(csName));
ISCPropertyValueCollectionPtr propVals = scObjPropPtr->GetPropertyValues();
return propVals->Getltem(COleVariant(index));

The following example illustrates how to access a specific property using Visual Basic
.NET. The example uses a Model Object object from Example 9:

' This function retrieves a specific value with the given index from the property with the
' given name.
Public Function GetPropValue(ByRef scObj As SCAPI.ModelObject, ByRef propName As String, _index As Integer) As
SCAPI.PropertyValue
Dim scProp as SCAPl.ModelProperty
Set scProp = scObj.Properties.ltem(propName)
Set GetPropValue = scProp.PropertyValues.ltem(index)

End Function

66 API Reference Guide

Accessing Object Properties

Filtering Properties

Subsets of an instance of ISCModelPropertyCollection can be created by using its
CollectProperties method of ISCModelObject. The CollectProperties method creates a
new instance of ISCModelPropertyCollection based on the filtering criteria specified in
the parameters of the method. By filtering the property collection, you can retrieve
properties of a certain class, properties with specified flags set, or properties that do not
have specified flags set. The filtering criteria is optional, and any number of
combinations of criteria can be used. More information about specific property flags is
located in the Enumerations (see page 153) section.

Note: For more information about identifiers used in property classes, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin® Data Modeler installation folder.

Chapter 3: APl Tasks 67

Accessing Object Properties

ISCModelObject Interface

The following table contains information on the ISCModelObject interface:

Signature Description Valid Arguments
ISCModelPropertyCollection * Returns a property Classlds:
CollectProperties(VARIANT collection of the type . .

Empty — All t fth t
Classlds [optional], VARIANT that you require mpty properties of the object are

MustBeOn [optional], VARIANT
MustBeOff [optional])

returned.

m VT_ARRAY|VT_BSTR — SAFEARRAY of property
class IDs. Returns the properties with the given
property class identifiers.

m VT_ARRAY|VT_BSTR — SAFEARRAY of property
names. Returns the properties with the given
class names.

m VT_BSTR-ID of a property class. Returns the
property with the given property class identifier.

m VT_BSTR — Name of a property. Returns the
property with the given class name.

m VT_BSTR — List of property class IDs delimited by
semicolons. Returns the properties with the
given property class identifiers.

m VT_BSTR — List of property names delimited by
semicolons. Returns the properties with the
given class names.

MustBeOn:

m Empty — Defaults to SCD_MPF_DONT_CARE and
returns all properties.

m VT_I4—-SC_ModelObjectFlags flags that must be
on. Returns the properties with the specified
flags set.

MustBeOff:

m Empty — Defaults to SCD_MPF_NULL and returns
all properties.

m VT_I4—-SC_ModelObjectFlags flags that must be

off. Returns the properties that do not have the
specified flags set.

68 API Reference Guide

Accessing Object Properties

Note: Setting certain filter criteria can influence the effectiveness of data retrieving. For
example, setting the MustBeOn filter to SCD_MPF_DERIVED builds a collection with only
the calculated and derived properties. Requests to evaluate the calculated and derived
properties will reduce performance while iterating over the collection. However, setting
the MustBeOff filter to the same value, SCD_MPF_DERIVED, which excludes the
calculated and derived properties, improves performance.

Example 17

The following example illustrates how to filter properties using C++. The example uses a
Model Object object from Example 9:

void GetProperties(ISCModelObjectPtr & scObjPtr)
{

ISCModelPropertyCollectionPtr propColPtr;
propColPtr = scObjPtr->GetProperties(); // no filtering
VARIANT valFlags;

V_VT(&valFlags) = VT_l4;

V_14(&valFlags) = SCD_MPF_SCALAR;

propColPtr = scObjPtr->CollectProperties(vtMissing, valFlags, vtMissing); // scalar properties only
propColPtr = scObjPtr->CollectProperties(vtMissing, vtMissing, valType); // non-scalar properties only
}

The following example illustrates how to filter properties using Visual Basic .NET. The
example uses a Model Object object from Example 9:

Public Sub(ByRef scObj As SCAPI.ModelObject)
Dim scObjProperties As SCAPI.ModelProperties

scObjProperties = scObj.Properties ' no filtering
scObjProperties = scObj.CollectProperties(, SCD_MPF_SCALAR) ' scalar properties only

scObjProperties = scObj.CollectProperties(, , SCD_MPF_SCALAR) ' non-scalar properties only
End Sub

Chapter 3: APl Tasks 69

Modifying the Model Using Session Transactions

Modifying the Model Using Session Transactions

Begin Transaction

In order to make modifications to a model, session transactions must be used. Prior to
making a modification, either BeginTransaction() or BeginNamedTransaction() must be
called. Once all the modifications are completed, CommitTransaction() must be called.

Note: Nested transactions and rollbacks are supported with certain limitations. The
limitation is illustrated in the following state diagram:

After the beginning of an outer transaction, the APl is in State | of the diagram. A new
nested transaction can be opened or the outer transaction can be closed. Any operation
other than the open or close of a transaction, such as creating, modifying objects,
properties, and so on, will transfer the API to State Il. In that state further modifications
can continue, but no new nested transactions are allowed. The API continues to be in
that state until the current transaction is committed or rolled back.

Use of nested transactions allows better control over modification flow. The following
examples describe the uses:

Commit Transaction

Carries out enlisted modifications immediately. Therefore, without closing the
outer transaction, the small nested transactions can reflect separate steps of the
complex changes with the results of the committed transaction instantly available
for the consumption by the next step.

Rollback

Cancels out the results of all nested transactions. This includes transactions that
were committed before the outer transaction rollback.

To indicate that a modification to the model is about to occur, either the
BeginTransaction() or the BeginNamedTransaction() must be called.

70 API Reference Guide

Modifying the Model Using Session Transactions

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Arguments

VARIANT BeginTransaction() Opens a transaction on the None
session. Returns an identifier of
the transaction.

VARIANT BeginNamedTransaction(BSTR Opens a transaction on the Name — Provides a name for a new
Name, VARIANT PropertyBag [optional]) session with the given name. transaction.
Returns an identifier of the PropertyBag — Collection of
transaction. optional parameters for the

transaction.

Example 18

The following example illustrates modifying the model using the Begin Transaction in
C++. The example uses a Session object from Example 6:

void OpenSession(ISCSessionPtr & scSessionPtr)
{

variant_t transactionld; //transaction ID for the session

Variantlnit(&transactionld);
transactionld = scSessionPtr->BeginTransaction();

/e
}

The following example illustrates modifying the model using the Begin Transaction in
Visual Basic .NET. The example uses a Session object from Example 6:

Public Sub OpenSession(ByRef scSession As SCAPI.Session)
Dim m_scTransactionld As Variant

scTransactionld = scSession.BeginNamedTransaction("My Transaction")
End Sub

Commit Transaction
The CommitTransaction() is used to commit the modifications to the in-memory model.
Note: The Commit only applies to the in-memory model while the APl is running. To

persist the modifications, the model must be explicitly saved using the
ISCPersistenceUnit::Save() function.

Chapter 3: APl Tasks 71

Modifying the Model Using Session Transactions

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature

Description Valid Arguments

VARIANT_BOOL

Commits the specified None

CommitTransaction(VARIANT Transactionld) transaction

Example 19

The following example illustrates modifying the model using the Commit Transaction in
C++. The example uses a Session object from Example 6:

void Transaction(ISCSessionPtr & scSessionPtr)
{

variant_t transactionld; //transaction ID for the session

Variantlnit(&transactionld);
transactionld = scSessionPtr->BeginTransaction();

// Make modifications to the model here ...

scSessionPtr->CommitTransaction(transactionld);

The following example illustrates modifying the model using the Commit Transaction in
Visual Basic .NET. The example uses a Session object from Example 6:

Public Sub Transaction(ByRef scSession As SCAPI.Session)
Dim scTransactionld As Variant

scTransactionld = scSession.BeginTransaction
" make modifications here ...

scSession.CommitTransaction(scTransactionld)
End Sub

72 API Reference Guide

Creating Objects

Creating Objects

The first step in creating a new object is to retrieve the ISCModelObject instance of the
parent of the new object. From the parent of the new object, retrieve its child objects in
an instance of ISCModelObjectCollection. Then, add the new object to the child objects
collection.

Note: For information about valid object class names and identifiers, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin® Data Modeler installation folder.

Chapter 3: APl Tasks 73

Creating Objects

ISCModelObjectCollection Interface

The following table contains information on the ISCModelObjectCollection interface,
which is used when you create a new model object:

Signature Description

Valid Arguments

Creates a Model
Objects collection,
which represents a
subcollection of itself

ISCModelObjectCollection *
Collect(VARIANT Root,
VARIANT Classld [optional],
VARIANT Depth [optional],
VARIANT MustBeOn
[optional], VARIANT
MustBeOff[optional])

Root:

VT_UNKNOWN — The ISCModelObject pointer of the
root object. Returns the descendants of the given
object.

m VT_BSTR - The ID of the root object. Returns the
descendants of the object with the given object
identifier.

Classld:

m Empty — Not needed when obtaining the children of
an object.

Depth:

m VT_l4 —Set depth to 1 when obtaining the immediate
children of an object.

MustBeOn:
m Empty — Not needed when obtaining the children of
an object.
MustBeOff:
m Empty — Not needed when obtaining the children of
an object.
ISCModelObject * Adds an object of Class:

Add(VARIANT Class, VARIANT type Class to the
Objectld [optional]) model

m VT_BSTR —Name of a class. Creates an object of the
given class name.

m VT_BSTR —Class ID of an object type. Creates an
object of the class with the given identifier.
Objectld:

m Empty — The API assigns an object identifier for a new
object.

m VT_BSTR—ID for a new object. The API assigns the
given object identifier to the new object.

74 API Reference Guide

Setting Property Values

Example 20

The following example illustrates how to create objects using C++. The example uses a
Session object from Example 6:

// NOTE: ISCSession::BeginTransaction() must be called prior to calling this

// function

//1SCSession::CommitTransaction() must be called upon returning from this

// function

void CreateObject(ISCSessionPtr & scSessionPtr, CString & csType,
ISCModelObjectPtr & parentObyj)

variant_t transactionld; // transaction ID for the session

Variantlnit(&transactionld);

transactionld = scSessionPtr->BeginTransaction();

ISCModelObjectCollectionPtr childObjColPtr =
scSessionPtr->GetModelObject()->Collect(parentObj->GetObjectld(), vtMissing,(long)1); // get

// child objects

// Add child object to collection

ISCModelObjectPtr childObjPtr = childObjColPtr->Add(COleVariant(csType));

/.

scSessionPtr->CommitTransaction(transactionld);

The following example illustrates how to create objects using Visual Basic .NET. The
example uses a Session object from Example 6:

Public Sub AddNewObject(ByRef scSession As SCAPI.Session, _
ByRef parentObj As SCAPI.ModelObject, type As String)
Dim scObj as SCAPI.ModelObject
Dim scChildObjCol As SCAPI.ModelObjects
Dim transactionID as Variant

transactionlD = scSession.BeginTransaction
scChildObjCol = scSession.ModelObjects.Collect(parentObj, , 1) ' child objects collection

scObj = scChildObjCol.Add(type) 'add new object to the child object collection

scSession.CommitTransaction(transactionlD)
End Sub

Setting Property Values

To set a property value of a model object, use the Value member of an instance of the
ISCModelProperty interface.

Chapter 3: APl Tasks 75

Setting Property Values

Setting Scalar Property Values

The valid VARIANT types that can be used to set a scalar property value is dependent on
the type of the property.

Note: For more information, see the HTML document erwin Metamodel Reference, in

the Metamodel Reference Bookshelf located in the erwin® Data Modeler installation
folder.

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature Description Valid Arguments

void Value(VARIANT Valueld Sets the indicated property Valueld:

{Z,TS;;;;],; \[/cﬁ,i:ﬁ:;] value with the given value Empty — Not used when setting scalar
' ties.
VARIANT Val) properties
ValueType:

m Empty — Not used.
Val:

m Dependent upon the property type.

Note: For information about valid property values, see the HTML document erwin
Metamodel Reference, in the Metamodel Reference Bookshelf located in the erwin®
Data Modeler installation folder.

Example 21

The following example illustrates how to set scalar property values using C++. The
example uses a Model Object object from Example 9 and assumes that a transaction has
opened:

// NOTE: ISCSession::BeginTransaction() must be called prior to calling this
// function
//15CSession::CommitTransaction() must be called upon returning from this
// function
void SetNameProperty(ISCModelObjectPtr & scObjPtr, CString & csName)
{
ISCModelPropertyCollectionPtr propColPtr = scObjPtr->GetProperties();
CString csPropName ="Name";
ISCModelPropertyPtr nameProp = propColPtr > Getltem(COleVariant(csPropName));
if (nameProp != NULL)
nameProp->PutValue(vtMissing, (long) SCVT_BSTR, csName);

76 API Reference Guide

Setting Property Values

The following example illustrates how to set scalar property values using Visual Basic
.NET. The example uses a Model Object object from Example 9 and assumes that a
transaction has opened:

' NOTE: ISCSession::BeginTransaction() must be called prior to calling this function
' ISCSession::CommitTransaction() must be called upon returning from this function
Public Sub SetScalarPropValue(ByRef scObj As SCAPI.ModelObject, ByRef val As Variant)
Dim modelProp As SCAPI.ModelProperty
modelProp = scObj.Properties(“Name”)
modelProp.Value = val
End Sub

Setting Non-Scalar Property Values

To set a non-scalar property value, you must identify the specific value that you want to
set. This is done using the Valueld parameter. The Valueld can either be the zero-based

index of the property value collection or the name of the member if the property is a
structure.

Note: For r7.3, erwin DM does not support naming non-scalar property members.

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature

Description Valid Arguments

void Value(VARIANT Valueld Sets the indicated property value Valueld:
[optional], VARIANT ValueType with the given value

[optional], VARIANT Val)

m VT_l4 —Index for a non-scalar property
of which the given value is set.

m VT_BSTR - Name of a memberina
non-scalar property of which the given
value is set.

ValueType:

m Empty — Not used.
Val:

m Dependent upon the property type.

Note: For information about valid property values, see the HTML document erwin
Metamodel Reference, in the Metamodel Reference Bookshelf located in the erwin®
Data Modeler installation folder.

Chapter 3: APl Tasks 77

Deleting Objects

Example 22

The following example illustrates how to set non-scalar property values using C++. The
example uses a Model Object object from Example 9 and assumes that a transaction has
opened:

// NOTE: ISCSession::BeginTransaction() must be called prior to calling this
// function
//1SCSession::CommitTransaction() must be called upon returning from this
// function
void SetNameProperty(ISCModelObjectPtr & scObjPtr, CString & csValue)
{
ISCModelPropertyCollectionPtr propColPtr = scObjPtr->GetProperties();
CString csPropName = "Non-Scalar";
ISCModelPropertyPtr nameProp = propColPtr > Getltem(COleVariant(csPropName));
if (nameProp != NULL)
// Setting the first element
nameProp->PutValue(COleVariant(OL), (long) SCVT_BSTR, csValue);
}

The following example illustrates how to set non-scalar property values using Visual
Basic .NET. The example uses a Model Object object from Example 9 and assumes that a
transaction has opened:

' NOTE: ISCSession::BeginTransaction() must be called prior to calling this function
' ISCSession::CommitTransaction() must be called upon returning from this function
Public Sub SetScalarPropValue(ByRef scObj As SCAPI.ModelObject, ByRef val As Variant)
Dim modelProp As SCAPI.ModelProperty
modelProp = scObj.Properties(“Name”)
Dim index As Long
Index=0 'Settingindex tozero
modelProp.Value(index) =val 'index is used to access non-scalar property
End Sub

Deleting Objects

You can delete an object by removing the ISCModelObject interface instance of the
object from the instance of ISCModelObjectCollection. You identify the object that you
want to delete either by its pointer to the interface or by its object identifier.

78 API Reference Guide

Deleting Properties and Property Values

ISCModelObjectCollection Interface

The following table contains information on the ISCModelObjectCollection interface,
which is used to delete model objects:

Signature Description Valid Arguments
VARIANT_BOOL Removes the specified Object:
Remove(VARIANT model object from a model

VT_UNKNOWN — ISCModelObject * pointer to the
object that you want to delete. Removes the given
object.

Object)

m VT_BSTR - ID of the object. Removes the object with
the given object identifier.

Example 23

The following example illustrates how to delete objects in C++ if there is a model objects
collection and that a transaction has opened:

CString csID; // 1D of object to be removed

/e
CComVariant bRetVal = scObjColPtr->Remove(COleVariant(csID));

The following example illustrates how to delete objects in Visual Basic .NET if there is a
model objects collection and that a transaction has opened:
bRetVal = scObjCol.Remove(objID)

Deleting Properties and Property Values

Properties are deleted by removing the property from the instance of the
ISCModelPropertyCollection interface. If the property is non-scalar, the individual
property value can be removed by using the RemoveValue method of the
ISCModelProperty interface.

Note: For more information about valid property names and property identifiers, see
the HTML document erwin Metamodel Reference, in the Metamodel Reference
Bookshelf located in the erwin® Data Modeler installation folder.

The following sections describe the interfaces used to delete model properties and
model property values.

Chapter 3: APl Tasks 79

Deleting Properties and Property Values

ISCModelPropertyCollection Interface

The following table contains information on the ISCModelPropertyCollection interface:

Signature Description Valid Arguments
VARIANT_BOOL Removes the indicated Classld:
Remove(VARIANT Classld) property from the bound

VT_UNKNOWN - ISCModelProperty
pointer to the object that you want to
remove. Removes the given property.

object

m VT_BSTR — Name of the property.
Removes the property with the given class
name.

m VT_BSTR-ID of the property. Removes
the property with the given class
identifier.

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature Description Valid Arguments
VARIANT_BOOL Removes the specified value Valueld:

f h .
Rem.oveVaIue(VARIANT Valueld from the property = Empty — For scalar properties only.
[optional])

m VT_l4 —Index of a non-scalar property.
Removes the value with the given index in
a non-scalar property.

m VT_BSTR — Name of the property member
in a non-scalar property. Removes the
value of the non-scalar property member
with the given name.

VARIANT_BOOL Remove all values from the None
RemoveAllValues() property

80 API Reference Guide

Deleting Properties and Property Values

Example 24

The following example illustrates how to delete scalar properties using C++ if there is a
model object and a transaction is open:

CString propName("Some Property Name");
/.
CComVariant bRetVal = scObjPtr->GetProperties()->Remove(COleVariant(propName));

The following example illustrates how to delete scalar properties using Visual Basic .NET
if there is a model object and a transaction is open:

Dim propName As String
propName = "Some Property Name"

bRetVal = scObj.Properties.Remove(propName)

Deleting Non-Scalar Property Values

To remove all the values from a non-scalar property, remove the property itself from
the ISCModelPropertyCollection using the Remove method. To remove a specific value
from a non-scalar property, use the RemoveValue method of the ISCModelProperty
interface. As with accessing the non-scalar property values, the property value is
identified using the Valueld parameter. Valueld can either be the zero-based index of
the value, or the name of the member if the property type is a structure.

Note: For r7.3, erwin DM does not support naming non-scalar property members.
Example 25

The following example illustrates how to delete non-scalar property values using C++ if
there is a model object and a transaction is open:

ISCModelPropertyCollectionPtr propColPtr = scObjPtr->GetProperties();

CString csPropName = "Some Property Name";

ISCModelPropertyPtr scPropPtr = propColPtr->Getltem(COleVariant(csPropName));
long index; //index of amember in a non-scalar property

index=0; //Setto the first element

/e

bRetVal = scPropPtr->RemoveValue(index); // remove single value from the property

The following example illustrates how to delete non-scalar property values using Visual
Basic .NET if there is a model object and a transaction is open:

Dim scProp As SCAPI.ModelProperty
scProp = scObj.Properties("Some Property Name")
bRetVal = scProp.RemoveValue(index) ' Remove single value from the property

Chapter 3: APl Tasks 81

Saving the Model

Saving the Model

If modifications were made to the erwin DM model, the persistence unit must be saved
in order to persist the changes.

ISCPersistenceUnit Interface

The following table contains information on the ISCPersistenceUnit interface:

Signature Description Valid Arguments
VARIANT_BOOL Persists model data to Locator:
Save(VARIANT Locator external storage

m VT_BSTR - Full path of the location to store the
model. Provides a new location for the persistence
unit data source as a string with a file or mart item
location, along with the attributes required for
successful access to storage.

[optional], VARIANT
Disposition [optional]

m Empty — Indicates the use of the original persistence
unit location.

Disposition:

Specifies changes in access attributes, such as read only.

Example 26

The following example illustrates how to save a model using C++. The example uses a
Persistence Unit object from Example 5:

void Save(ISCPersistenceUnitPtr & scPUnitPtr)

{
ISCPropertyBagPtr propBag = scPUnitPtr->GetPropertyBag ("Locator");
long index =0;
_bstr_t bstrFileName = propBag->GetValue(COleVariant(index));

// Change bstrFileName to a new location
scPUnitPtr->Save(bstrFileName);

82 API Reference Guide

Accessing Metamodel Information

The following example illustrates how to save a model using Visual Basic .NET. The
example uses a Persistence Unit object from Example 5:

Public Sum Save(scPUnit As SCAPI.PersistenceUnit)
Dim propBag as SCAPI.PropertyBag
propBag = scUnit.PropertyBag(“Locator”)
Dim sFileName As String
sFileName = propBag.Value(“Locator”)
sFileName = sFileName + “.bak”
scPUnit.Save(sFileName)

End Sub

Accessing Metamodel Information

You can obtain the metamodel of erwin DM by using the API. The metamodel can be
accessed in the same manner as an erwin DM model. As in the case with model data,
the ISCPersistenceUnit or ISCModelSet pointer in an ISCSession::Open call indicates the
model set with which you are working.

There is a special case for the intrinsic metamodel. To obtain the intrinsic metamodel
for a specific class of metadata, you can use the Property Bag component created with
the PropertyBag method of the ISCApplicationEnvironment interface. A Property Bag
instance populated with EMX_Metadata_Class or EM2_Metadata_Class properties from
the Application category indicates the type of the intrinsic metamodel to access. The
instance must be submitted as the first parameter in an ISCSession::Open call, instead of
ISCPersistenceUnit or ISCModelSet pointers. If the first parameter in an ISCSession::Open
call is NULL, then the intrinsic metamodel for the top model set in a persistence unit,
the EMX class metadata, will be accessed.

To indicate that a session will access metamodel information, you set the Level
parameter of the Open method to SCD_SL_M1.

Chapter 3: APl Tasks 83

Accessing Metamodel Information

ISCApplicationEnvironment Interface

The following table contains information on the ISCApplicationEnvironment interface:

Signature Description Valid Arguments
ISCPropertyBag Populates a property bag Category:
PropertyBag(VARIANT with one or more property

Category[optional], VARIANT
Name[optional], VARIANT
AsString[optional])

values as indicated by
Category and Name

VT_BSTR — Features returned from the
given category. Must be Application.

Name:
m VT_BSTR —The property with the given
name and category is returned. Must be

EMX Metadata Class for EMX metadata and
EM2 Metadata Class for EM2 metadata.

AsString:

m Empty — All values in the property bag are
presented in their native type.

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature

Description

Valid Arguments

VARIANT_BOOL
Open(lUnknown * Unit,
VARIANT Level [optional],
VARIANT Flags [optional])

Binds self to the intrinsic
metamodel, persistence unit,
or model set identified by
the Unit parameter

Unit:

NULL — The intrinsic metamodel for the top
model set in a persistence unit. For the
current version this is EMX class metadata.

m ISCPropertyBag — The intrinsic metamodel
defined by the metadata class in the first
property of the bag.

m ISCPersistenceUnit — The metamodel for
the top model set in the persistence unit.

m ISCModelSet — The metamodel for the
model set.

Level:

m SCD_SL M1 - Metadata access.
Flags:

m Empty — Defaults to SCD_SF_NONE.

84 API Reference Guide

Closing the API

Example 27

The following example illustrates how to access an intrinsic metamodel using C++. The
example uses an Application object from Example 1:

void AccessMetaModel(ISCApplicationPtr & scAppPtr)
{
ISCSessionPtr scSessionPtr = scAppPtr->GetSessions()->Add(); //add a new
// session
// Open EMX intrinsic metamodel
CComVariant varResult = scSessionPtr->Open(NULL, (long) SCD_SL_M1); // meta-model level
if (varResult.vt == VT_BOOL && varResult.boolVal == FALSE)
return;

/s

The following example illustrates how to access an intrinsic metamodel using Visual
Basic .NET. The example uses an Application object from Example 1:

Public Sub AccessMetaModel(ByRef scApp As SCAPI.Application)
Dim scBag As SCAPI.PropertyBag
Dim scSession As SCAPL.Session

' Get a property bag with the EM2 metadata class
scBag = scApp.ApplicationEnvironment.PropertyBag("Application ", "EM2 Metadata Class")

' Open EM2 intrinsic metamodel

scSession = scApp.Sessions.Add

scSession.Open(scBag, SCD_SL_M1)
End Sub

Closing the API

When the client of the API has finished accessing the model, the sessions that were
open must be closed, and the persistence unit collection must be cleared.

ISCSession Interface

The following table contains information on the ISCSession interface:

Description Valid Arguments

VARIANT_BOOL Close()

Disconnects self from its associated None
persistence unit

Chapter 3: APl Tasks 85

Closing the API

ISCSessionCollection Interface

The following table contains information on the ISCSessionCollection interface:

Signature Description Valid Arguments

VARIANT_BOOL Remove(VARIANT Removes a Session object from the Sessionld:

Sessionid) collection = VT_UNKNOWN — Pointer to the

ISCSession interface. Removes
the given session from the
collection.

m VT_l4 —Zero-based index in the
session collection. Removes the
session with the given index
from the collection.

Example 28

The following example illustrates how to close a session using C++. It assumes that there
is a Session object and the session is open. The examples use an Application object from
Example 1:

void CloseSessions(ISCApplicationPtr & scAppPtr)

{
ISCSessionCollectionPtr scSessionColPtr = scAppPtr->GetSessions();
ISCSessionPtr scSessionPtr = scSessionColPtr->Getltem(COleVariant(OL))
// close the sessions
scSessionPtr->Close(); // close a single session
scSessionColPtr->Clear(); // clear the collection of sessions

The following example illustrates how to close a session using Visual Basic .NET. It
assumes that there is a Session object and the session is open. The examples use an
Application object from Example 1:

Public Sub CloseSessions(scApp As SCAPI.Application)
Dim scSessionCol As SCAPI.Sessions
scSessionCol = scApp.Sessions
Dim scSession As SCAPL.Session

For Each scSession In scSessionCol
scSession.Close
Next
While (scSessionCol.Count >0)
scSessionCol.Remove (0)
End
End Sub

86 API Reference Guide

Error Handling

Clearing Persistence Units

This section describes how to clear persistence units.

The effect of leaving persistence units in the Persistence Units collection is dictated by a
context in which an instance of the application is created. If a client is using the API in
the standalone mode, all units are closed. If a client is using the APl as an add-in
component, then after the client program is over, units are still open and available in
the application user interface with the exception of those that were explicitly closed and
removed from the persistence unit collection before exiting the program.

ISCPersistenceUnitCollection Interface

The following table contains information on the ISCPersistenceUnitCollection interface:

Signature

Description Valid Arguments

VARIANT_BOOL Clear()

Purges all units from the collection ~ None

Example 29

The following example illustrates how to clear persistence units using C++. It assumes
that there is an Application object from Example 1:

// remove the persistence units
scAppPtr->GetPersistenceUnits()->Clear();

The following example illustrates how to clear persistence units using Visual Basic .NET.
It assumes that there is an Application object from Example 1:
scApp.PersistenceUnits.Clear

Error Handling

The APl uses a generic COM error object to handle errors. Depending on the
programming environment, languages have their own protocols to retrieve errors from
the generic error object. For example, C++ and Visual Basic .NET use exception handling
to handle errors. To ensure a stable application, it is recommended that API clients use
error handling to trap potential errors such as attempting to access an object that was
deleted, or attempting to access an empty collection.

Chapter 3: APl Tasks 87

Error Handling

Example 30

The following example illustrates error handling using C++. It assumes that there is a
Model Object object from Example 9:

long GetObjectProperties(ISCModelObjectPtr & scObjPtr)
{
// Get the collection of Properties
ISCModelPropertyCollectionPtr scPropColPtr;
try
{
scPropColPtr = scObjPtr->GetProperties();
if (IscPropColPtr.GetInterfacePtr())
{
AfxMessageBox(""Unable to Get Properties Collection");
return FALSE;
}
/..
}
catch(_com_error &error)

{

AfxMessageBox(error.Description());

The following example illustrates error handling using Visual Basic .NET. It assumes that
there is a Model Object object from Example 9:

Public Sub GetObject(ByRef scSession As SCAPI.Session, ByRef objID As String)
Dim scObjCol as SCAPI.ModelObjects
Dim scObj as SCAPI.ModelObject

Try

scObjCol = scSession.ModelObjects

scObj = scObjCol.ltem(objID) ' retrieves object with given object ID
Catch ex As Exception

' Failed

Console.WriteLine(" API Failed With Error message :" + ex.Message())
End Try

End Sub

In addition to the generic error object, the API provides an extended error handling
mechanism with the Application Environment Message log. The message log can handle
a sequence of messages that is useful in a context of complex operations like
transactions.

More information about the Application Environment Message log organization is
located in the Property Bag for Application Environment (see page 157) section.

88 API Reference Guide

Error Handling

ISCApplicationEnvironment

The following table contains information on the ISCApplicationEnvironment interface:

Signature Description Valid Arguments

ISCPropertyBag Populates a property bag Category:

PropertyBag(VARIANT with one ormore property yT_BSTR — Must be Application.API.
Category[optional], VARIANT ~ Values as indicated by Name:

Name[optional], VARIANT Category and Name

AsString[optional]) m VT_BSTR - The property with the given

name and category is returned. Must be Is
Empty to determine if the message log has
messages. To retrieve the message log
content, it must be Log.

AsString:

m Empty — All values in the property bag are
presented in their native type.

m VT_BOOL - If set to TRUE, all values in the
property bag are presented as strings.

Chapter 3: APl Tasks 89

Error Handling

Example 32

The following example illustrates how to use the API to check messages from the API
extended message log using C++. It assumes that there is an Application object from
Example 1:

CString GetExtendedErrorinfo(ISCApplicationPtr & scAppPtr)
{
CString csExtendedErrors ="";
long index =0;

// Do we have messages in the log?
variant_t val = scAppPtr->GetApplicationEnvironment()-> GetPropertyBag("Application.Api.MessagelLog","Is Empty")->
GetValue(COleVariant(index));

if (val.vt == VT_BOOL && val.boolVal == false)
{
// Retrieve the log
val = m_scAppPtr->GetApplicationEnvironment()-> GetPropertyBag(" Application.Api.Messagelog","Log")->
GetValue(COleVariant(index));
if (val.vt & VT_ARRAY)
{
// thisis a SAFEARRAY

VARIANT HUGEP *pArray;
HRESULT hr;

// Get a pointer to the elements of the array.
hr = SafeArrayAccessData(val.parray, (void HUGEP**)&pArray);
if (FAILED(hr))

return csExtendedErrors;

long numErrors =0;
VARIANT wWalue = pArray[0]; // number of errors
if (Waluevt == VT_l4)

numeErrors =vValue.lVal;

/.
SafeArrayUnaccessData(val.parray);
}
}

90 API Reference Guide

Advanced Tasks

The following example illustrates how to use the API to check messages from the API
extended message log using Visual Basic .NET. It assumes that there is an Application
object from Example 1:

Public Sub GetExtendedErrorinfo(ByRef scApp As SCAPI.Application)
Dim nSize As Integer
Dim nWarnings As Integer
Dim nErrors As Integer
Dim nldx As Integer
Dim nMsgNumber As Integer
Dim aErrors() As Object
' Do we have messages in the log?
If scApp.ApplicationEnvironment.PropertyBag("Application.Api.MessagelLog", _"Is Empty").Value(0) = False Then
' Retrieve a log
aErrors=_
scApp.ApplicationEnvironment.PropertyBag("Application.Api.MessageLog", _ "Log").Value(0)
nSize = Int(aErrors(0))
nldx=1
nMsgNumber =0
Do While nMsgNumber < nSize
Console.WriteLine("Error " & aErrors(nldx) & " " + aErrors(nldx + 2))
Select Case aErrors(nldx + 1)
Case SCAPILSC_MessagelLogSeverityLevels.SCD_ESL_WARNING
nWarnings =nWarnings +1
Case SCAPILSC_MessageLogSeverityLevels.SCD_ESL_ERROR
nErrors = nErrors +1
End Select
nldx =nldx +8
nMsgNumber = nMsgNumber + 1
Loop

Console.WriteLine("Total number of errors in the transaction " & Str(nSize) & " with: " _& Str(nWarnings) & " warnings, "
& Str(nErrors) & " errors.")

End If
End Sub

Advanced Tasks

The material in this section provides examples of some advanced tasks and how they
can be executed.

Chapter 3: APl Tasks 91

Advanced Tasks

Creating User-Defined Properties

A User-Defined Property (UDP) is an example of a client expanding the erwin DM
metadata and involves creating and modifying objects on the metadata level. The
structure of the UDP definition is similar to the definition of all native properties. The
following diagram shows the metamodel objects involved when you define a UDP:

In this diagram an instance of the Property_Type object defines a UDP class, the
Object_Type object defines an object class with which the UDP is associated, and the
Association_Type object defines the association between object and property classes.

You are only required to create an instance of the Property_Type object to define a UDP.
erwin DM populates the rest of the necessary data. The following table describes the
properties and tags of the Property_Type object:

Property or Tag Name Description Valid Arguments

Name Property, UDP name erwin DM upholds the following convention in naming
UDPs to ensure their uniqueness. The convention is a
three part name separated with dot (.) symbols:

<ObjectClassName>.<Logical/Physical>.<Name>

An example of this naming convention is:
Model.Logical. My UDP

The erwin DM editors display only the last component.

Data_Type Property, SCVT_BSTR The property is read-only and set by erwin DM. All UDP
values have a string datatype.

tag_Is_Locally_Defined Property, TRUE The property is read-only and set to TRUE for all
user-defined metadata.

Definition Property, Optional Optional — Text that displays the UDP description.

tag_Is_Logical Tag, TRUE or FALSE Optional — The tag has a TRUE value for UDPs used in

logical modeling.

tag_ls_Physical Tag, TRUE or FALSE Optional — The tag has a TRUE value for UDPs used in
physical modeling.

tag_Udp_Default_Value Tag Optional — A string with the UDP default value.

92 API Reference Guide

Advanced Tasks

Property or Tag Name Description Valid Arguments
tag_Udp_Data_Type Tag Defines the interpretation for the UDP value in the erwin
DM editors. The valid values are:
m 1 (Integer)
m 2 (Text)
m 3 (Date)
m 4 (Command)
m 5(Real)
m 6 (List)
The property value can be:
m VT_l4 —Uses the numeric values listed above.
m VT_BSTR — Uses the string values listed above.
Assumes the Text type if it is not specified.
tag_Udp_Owner_Type Tag Required. Defines an object class to host instances of the
UDPs.
m VT_BSTR — Name of an object class. Indicates the host
class by the given class name.
m VT _BSTR - Class ID of an object class. Indicates the
host class by the given identifier.
tag_Udp_Values_List Tag String with comma-separated values. Only values from the

list are valid values for a UDP.

Valid only if the tag_Udp_Data_Type tag is set to List.

Chapter 3: APl Tasks 93

Advanced Tasks

//the following example was changed in r9.6, because the
Example 33

The following example illustrates how to use the API to define a UDP using Visual Basic
Script:

Dim oAPI
Set 0API = CreateObject("erwin9.SCAPI.9.0")
Dim oPU
Set oPU = 0API.PersistenceUnits.Create(Nothing)
Dim oSession
Set oSession = 0AP|.Sessions.Add
SCD_SL M1=1
call oSession.Open(oPU, SCD_SL_M1)
Dim Transld
Transld = oSession.BeginNamedTransaction("Create UDP")
Dim oUDP
Set oUDP = oSession.ModelObjects.Add("Property_Type")
' Populate properties

' Add udp with Text type
Set oUDP = oSession.ModelObjects.Add("Property_Type")
oUDP.Properties("Name").Value = "Entity.Logical. My UDP1"
oUDP.Properties("tag_Udp_Owner_Type").Value = "Entity"
oUDP.Properties("tag_Is_Logical").Value =True
oUDP.Properties("tag_Udp_Data_Type").Value =2
oUDP.Properties("tag_Udp_Default_Value").Value = "Text"
oUDP.Properties("tag_Order").Value ="1"

'Add udp with list type

Set oUDP = oSession.ModelObjects.Add("Property_Type")

94 API Reference Guide

Advanced Tasks

History Tracking

oUDP.Properties("Name").Value = "Entity.Logical. My UDP5"
oUDP.Properties("tag_Udp_Owner_Type").Value = "Entity"
oUDP.Properties("tag_Is_Logical").Value =True
oUDP.Properties("tag_Udp_Data_Type").Value =6

oUDP.Properties("tag_Udp_Values_List").Value ="1,2,3"
oUDP.Properties("tag_Udp_Default_Value").Value ="1"

oUDP.Properties("tag_Order").Value="1"
' Commit changes
oSession.CommitTransaction (Transld)

' Release the session

oSession.Close

Set oSession = Nothing
0AP!.Sessions.Clear

'Save to the file

Call oPU.Save("C:\Temp1\UDP.erwin", "OVF=Yes")

Historical information can be saved for your model, entities, attributes, tables, and
columns. erwin DM uses History objects to store the information in the model.

The API provides functionality that allows you to customize the process of history
tracking without having to work with the History objects directly. The
BeginNamedTransaction function of the ISCSession interface accepts a Property Bag
instance populated with the history tracking properties. The properties are in effect at
the initiation of an outer transaction and are confined to the scope of the transaction.

Chapter 3: APl Tasks 95

Advanced Tasks

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Arguments

VARIANT Opens a transaction on the session with Name — Provides a name for a new
BeginNamedTransaction(the given name. Returns an identifier of transaction.

BSTR Name, VARIANT the transaction. PropertyBag — Collection of parameters
PropertyBag [optional]) for history tracking in the transaction.

The following table describes the properties used in creating a new model:

Property Name Type Description

History_Tracking Boolean TRUE - Indicates that all historical information generated
during the transaction will be marked as the API event. The
TRUE value is assumed if the property is not provided.

FALSE — Uses the standard erwin DM mechanism of history
tracking.

History_Description BSTR When the History_Tracking property is TRUE, it provides the
content for the Description field of the history event.

Note: A complete set of available properties is located in the appendix APl Interfaces
Reference (see page 99).

96 API Reference Guide

Advanced Tasks

Example 34

The following example illustrates how to mark history records for entities and attributes
as APl events, and how to mark history records with the API History Tracking description
using Visual Basic .NET:

Public Sub Main()
Sub Main()
Dim oApi As New SCAPI.Application
Dim oBag As New SCAPI.PropertyBag
Dim oPU As SCAPI.PersistenceUnit

' Construct a new logical-physical model. Accept the rest as defaults
0Bag.Add("Model_Type", "Combined")
oPU = oApi.PersistenceUnits.Create(oBag)

' Clear the bag for the future reuse
oBag.ClearAll()

' Start a session
Dim oSession As SCAP1.Session

oSession = 0Api.Sessions.Add
oSession.Open(oPU)

' Prepare a property bag with the transaction properties
oBag.Add("History_Description", "API History Tracking")

' Start a transaction
Dim nTransld As Object

nTransld = oSession.BeginNamedTransaction("Create Entity and Attribute", oBag)

' Create an entity and an attribute
Dim oEntity As SCAPl.ModelObject
Dim oAttribute As SCAPI.ModelObject

oEntity = oSession.ModelObjects.Add("Entity")
oAttribute = oSession.ModelObjects.Collect(oEntity). Add("Attribute")
oAttribute.Properties("Name").Value = "Attr A"

' Commit

oSession.CommitTransaction(nTransld)
End Sub
You can select the history options for the model objects for which you want to preserve

history, as well as to control the type of events to track. This is done within the History
Options tab in the Model Properties dialog.

Chapter 3: APl Tasks 97

Advanced Tasks

If the check box for API events is cleared (unchecked), then no historic events from the
API category are recorded. It is possible to control the status of that check box, as well
as the check boxes for model object types from the API, by controlling the value of
properties in the model where the status of these check boxes is stored.

98 API Reference Guide

Appendix A: API Interfaces Reference

ISCApplication

This appendix lists the interfaces contained in the API, together with the methods and
arguments associated with these interfaces. There is also a section that contains
information regarding enumerations and describes various Property Bag components.

This section contains the following topics:

ISCApplication (see page 99)
API Interfaces (see page 100)

Enumerations (see page 153)
Property Bag Reference (see page 157)
Location and Disposition in Model Directories and Persistence Units (see page 173)

The ISCApplication interface is the entry point for the API client. Only one instance of
the component can be externally instantiated to activate the API. The client navigates
the interface hierarchy by using interface properties and methods to gain access to the
rest of the API functionality.

The following table contains the methods for the ISCApplication interface:

Method

Description

BSTR ApiVersion()

The API version.

ISCApplicationEnvironment * ApplicationEnvironment() Reports attributes of runtime environment and

available features, such as add-in mode, user interface
visibility, and so on.

ISCModelDirectoryCollection * ModelDirectories() Collects model directories accessible from the current

machine.

BSTR Name()

Modeling tool application name.

ISCPersistenceUnitCollection * PersistenceUnits() Returns a collection of all persistence units loaded in

the application.

ISCSessionCollection * Sessions() Returns a collection of sessions created within the
application.
BSTR Version() Modeling tool application version.

BSTR ResolveMartModelPath(BSTR modelLongld) Returns the path of the given model.

Returns empty if no model exists with the given details.

Appendix A: API Interfaces Reference 99

APl Interfaces

API Interfaces

This section describes each APl interface, and the methods associated with them.
Where applicable, signatures and valid arguments are also described.

Note: Some parameters contain an [optional] designation. This means that this
particular part of the parameter is optional and not required.

ISCApplicationEnvironment

The ISCApplicationEnvironment interface contains the information about the runtime
environment.

The following table contains the methods for the ISCApplicationEnvironment interface:

Method Description
ISCPropertyBag * Populates a property bag with one or more property
PropertyBag(VARIANT Category [optional], values as indicated by Category and Name.

VARIANT Name [optional], VARIANT AsString [optional])

Note: More information about ISCApplicationEnvironment is located in the Property Bag
for Application Environment (see page 157) section.

ISCApplicationEnvironment::PropertyBag Arguments

Here is the signature for the PropertyBag function:

ISCPropertyBag *PropertyBag(VARIANT Category, VARIANT Name, VARIANT AsString)

The following table contains the valid arguments for the PropertyBag function:

Parameter Valid Type/Value Description

Category [optional] Empty Complete set of features from all
categories are returned.

Category [optional] VT_BSTR — Name of category Features from the given category
are returned.

Name [optional] Empty All properties from the selected
category are returned.

Name [optional] VT_BSTR — Property name The property with the given name
and category is returned.

100 API Reference Guide

API Interfaces

Parameter

Valid Type/Value

Description

AsString [optional] Empty

All values in the property bag are
presented in native type.

AsString [optional]

VT_BOOL - TRUE or FALSE

If set to TRUE, all values in the
property bag are presented as
strings.

Note: More information about category and property names relating to VT_BSTR is
located in the Property Bag for Application Environment (see page 157) section.

ISCModelDirectory

The Model Directory encapsulates information on a single model directory entry.
Examples of the Model Directory are a file system directory or a mart library.

The following table contains the methods for the ISCModelDirectory interface:

Method

Description

VARIANT_BOOL DirectoryExists(BSTR Locator)

Returns TRUE if a specified directory exists.

VARIANT_BOOL DirectoryUnitExists(BSTR Locator)

Returns TRUE if a specified directory unit exists.

SC_ModelDirectoryFlags Flags()

Model Directory flags. A 32-bit property flag word.

VARIANT_BOOL IsOfType(ISCModelDirectory *
Directory)

Returns TRUE if Directory has the same type of
connection as self.

For example, directory entries from the same mart
and with the same login attributes, such as user,
password, and so on, are considered of the same type.

ISCModelDirectory * LocateDirectory (BSTR Locator,
VARIANT Filter [optional])

Starts enumeration over the directory sub-entries.

ISCModelDirectory * LocateDirectoryNext()

Locates the next sub-entry in the directory
enumeration. Returns a NULL pointer if no more
model directory entries can be found.

ISCModelDirectoryUnit * LocateDirectoryUnit (BSTR
Locator, VARIANT Filter [optional])

Starts enumeration over the directory units.

ISCModelDirectoryUnit * LocateDirectoryUnitNext()

Locates the next unit in the directory enumeration.

BSTR Locator()

Location of the directory including the absolute path
and parameters. Does not include password
information.

Appendix A: API Interfaces Reference 101

APl Interfaces

Method

Description

BSTR Name()

Model Directory name. For example, the file system
directory name without path information.

ISCPropertyBag™* PropertyBag(VARIANT List [optional],
VARIANT AsString [optional])

Returns a pointer on a property bag with the directory
properties.

Note: A directory property is present in the resulting
bag only if it has a value. If the property does not have
any value set, the property bag will not have the
property listed.

void PropertyBag(VARIANT List [optional], VARIANT
AsString [optional], ISCPropertyBag* Property Bag)

Accepts a pointer on a property bag with the directory
properties.

SC_ModelDirectoryType Type()

Type of a directory.

ISCModelDirectory::DirectoryExists Arguments

Here is the signature for the DirectoryExists function:

VARIANT_BOOL DirectoryExists(BSTR Locator)

The following table contains the valid arguments for the DirectoryExists function:

Parameter

Valid Type/Value

Description

Locator

BSTR — String with a directory name

Identifies a directory path.

For an absolute path, the mart
database information and access
parameters are ignored.

ISCModelDirectory::DirectoryUnitExists Arguments

Here is the signature for the DirectoryUnitExists function:

VARIANT_BOOL DirectoryUnitExists(BSTR Locator)

The following table contains the valid arguments for the DirectoryUnitExists function:

Parameter

Valid Type/Value

Description

Locator

BSTR — String with a directory name

Identifies a directory unit path.

For an absolute path, the mart
database information and access
parameters are ignored.

102 API Reference Guide

API Interfaces

ISCModelDirectory::IsOfType Arguments

Here is the signature for the IsOfType function:

VARIANT_BOOL IsOfType(ISCModelDirectory * Directory)

The following table contains the valid arguments for the IsOfType function:

Parameter Valid Type/Value Description

Directory ISCModelDirectory *. Model Identifies a directory
Directory component pointer

ISCModelDirectory::LocateDirectory Arguments

Here is the signature for the LocateDirectory function:

ISCModelDirectory * LocateDirectory (BSTR Locator, VARIANT Filter)

The following table contains the valid arguments for the LocateDirectory function:

Parameter Valid Type/Value Description
Locator BSTR — String with a directory Identifies a directory path that can
location contain wildcard characters in the

last path component in order to
search for sub-entries.

If the path provides an exact
location, it can also be used to
return to a single model directory
entry.

For an absolute path, the mart

database information and access
parameters are ignored.

Filter [optional] VT_BSTR — Options Specifies a set of options to narrow
a search.

Appendix A: API Interfaces Reference 103

APl Interfaces

ISCModelDirectory::LocateDirectoryUnit Arguments

Here is the signature for the LocateDirectoryUnit function:

ISCModelDirectoryUnit * LocateDirectoryUnit (BSTR Locator, VARIANT Filter)

The following table contains the valid arguments for the LocateDirectoryUnit function:

Parameter Valid Type/Value Description
Locator BSTR — String with a directory or unit Identifies a directory path that can
location contain wildcard characters in the

last path component in order to
search for units.

If the path provides an exact
location, it can also be used to
return to a single model directory
unit.

For an absolute path, the mart
database information and access
parameters are ignored.

Filter [optional] VT_BSTR — Options Specifies a set of options to narrow
a search.

ISCModelDirectory::PropertyBag Arguments (Get Function)

Here is the signature for the PropertyBag (Get) function:

ISCPropertyBag * PropertyBag(VARIANT List, VARIANT AsString)

The following table contains the valid arguments for the PropertyBag (Get) function:

Parameter Valid Type/Value Description
List [optional] VT_BSTR — Semicolon separated list Provides a list of the model directory
of property names properties. If the list is provided,

only listed properties are placed in
the returned property bag.

List [optional] Empty Requests a complete set of
properties.

104 API Reference Guide

API Interfaces

Parameter Valid Type/Value Description

AsString [optional] VT_BOOL — TRUE or FALSE If set to TRUE, requests that all
values in the bag to be presented as
strings. The default is FALSE with all
values in their native format.

AsString [optional] Empty All values in the property bag are
presented in native type.

Note: Information about valid property names for VT_BSTR is located in the Property
Bag for Model Directory and Model Directory Unit (see page 164) section.

ISCModelDirectory::PropertyBag Arguments (Set Function)

Here is the signature for the PropertyBag (Set) function:

void PropertyBag(VARIANT List, VARIANT AsString, ISCPropertyBag * propBag)

The following table contains the valid arguments for the PropertyBag (Set) function:

Parameter Valid Type/Value Description

List [optional] Not used

AsString [optional] Not used

propBag ISCPropertyBag * A pointer on a property bag with the

directory properties to process.

Note: Information about valid property names and format for ISCPropertyBag * is
located in the Property Bag for Model Directory and Model Directory Unit (see
page 164) section.

ISCModelDirectoryCollection

The Model Directory Collection lists all top-level Model Directories available including
the one made available with the application user interface. A client can register new
Model Directories with this collection.

Method Description

IlUnknown _NewEnum() Constructs an instance of the collection enumerator
object.

ISCModelDirectory * Add(BSTR Locator, VARIANT Adds a new top-level directory on the list of available

Disposition [optional]) directories.

Appendix A: API Interfaces Reference 105

APl Interfaces

Method Description

VARIANT_BOOL Clear() Removes all the top-level directories from a collection
and disconnects the directories from associated marts.

long Count() The number of ModelDirectory components in the
collection.

ISCModelObject * Item(long nindex) Returns an /Unknown interface pointer identified by its
ordered position.

VARIANT_BOOL Remove(VARIANT Selector, Removes a top-level directory from the list of available

VARIANT_BOOL Disconnect [optional]) directories.

ISCModelDirectoryCollection::Add Arguments

Here is the signature for the Add function:

ISCModelDirectory * Add(BSTR Locator, VARIANT Disposition)

The following table contains the valid arguments for the Add function:

Parameter Valid Type/Value Description

Locator BSTR — A model directory location Identifies a model directory location
along with the attributes required
for successful access to storage.

Disposition [optional] VT_BSTR — List of keywords Arranges access attributes, such as
parameters resume session.

ISCModelDirectoryCollection::ltem Arguments

Here is the signature for the /tem function:

ISCModelDirectory * Item(long nindex)

The following table contains the valid arguments for the /tem function:

Parameter Valid Type/Value Description

nindex A long number Identifies an ordered position of a
Model Directory item. The index is
zero-based.

Class [optional] Empty Returns the object specified by
nindex.

106 API Reference Guide

API Interfaces

ISCModelDirectoryCollection::Remove Arguments

Here is the signature for the Remove function:

VARIANT_BOOL Remove(VARIANT Selector, VARIANT_BOOL Disconnect [optional])

The following table contains the valid arguments for the Remove function:

Parameter Valid Type/Value Description

Selector VT_UNKNOWN - An object pointer for the Model
ISCModelDirectory pointer Directory to remove.

Selector VT_l4 — Numeric index Identifying a model directory for

removal with a zero-based index.

ISCModelDirectoryUnit

The Model Directory Unit encapsulates information on a single directory unit. A file
system file and a model in a mart are examples of the Model Directory Unit.

The following table contains the methods for the ISCModelDirectoryUnit interface:

Method Description
SC_ModelDirectoryFlags Flags() Model directory unit flags. A 32-bit property flag
word.

VARIANT_BOOL IsOfType(ISCModelDirectory * Directory) Returns TRUE if directory has the same type of
connection as self.

For example, directory entries from the same mart
and with the same login attributes, such as user,
password, and so on, are considered of the same

type.

BSTR Locator() Location of the directory unit including the absolute
path and parameters. Does not include password
information.

BSTR Name() Model directory unit name. For example, the file

system file name without path information.

Appendix A: API Interfaces Reference 107

APl Interfaces

Method Description

ISCPropertyBag™* PropertyBag(VARIANT List [optional], Returns a pointer on a property bag with the
VARIANT AsString [optional]) directory unit properties.

Note: A directory unit property is present in the
resulting bag only if it has a value. If the property
does not have any value set, the property bag will not
have the property listed.

void PropertyBag(VARIANT List [optional], VARIANT Accepts a pointer on a property bag with the
AsString [optional], ISCPropertyBag* Property Bag) directory unit properties.
SC_ModelDirectoryType Type() Type of a directory.

Note: More information about Model Directory flags is located in the Enumerations (see
page 153) section.

ISCModelDirectoryUnit::IsOfType Arguments

Here is the signature for the IsOfType function:

VARIANT_BOOL IsOfType(ISCModelDirectory * Directory)

The following table contains the valid arguments for the IsOfType function:

Parameter Valid Type/Value Description

Directory ISCModelDirectory * — Model Identifies a directory
Directory component pointer

ISCModelDirectoryUnit::PropertyBag Arguments (Get Function)

Here is the signature for the PropertyBag (Get) function:

ISCPropertyBag * PropertyBag(VARIANT List, VARIANT AsString)

The following table contains the valid arguments for the PropertyBag (Get) function:

Parameter Valid Type/Value Description
List [optional] VT_BSTR — Semicolon separated list Provides a list of the model directory
of property names unit properties. If the list is

provided, only listed properties are
placed in the returned property bag.

List [optional] Empty Requests a complete set of
properties.

108 API Reference Guide

API Interfaces

Parameter Valid Type/Value Description

AsString [optional] VT_BOOL — TRUE or FALSE If set to TRUE, requests that all
values in the bag to be presented as
strings. The default is FALSE with all
values in their native format.

AsString [optional] Empty All values in the property bag are
presented in native type.

Note: Information about valid property names for VT_BSTR is located in the Property
Bag for Model Directory and Model Directory Unit (see page 164) section.

ISCModelDirectoryUnit::PropertyBag Arguments (Set Function)

Here is the signature for the PropertyBag (Set) function:

void PropertyBag(VARIANT List, VARIANT AsString, ISCPropertyBag * propBag)

The following table contains the valid arguments for the PropertyBag (Set) function:

Parameter Valid Type/Value Description

List [optional] Not used

AsString [optional] Not used

propBag ISCPropertyBag * A pointer on a property bag with the

unit properties to process.

Note: Information about valid property names and format for ISCPropertyBag * is
located in the Property Bag for Model Directory and Model Directory Unit (see
page 164) section.

ISCModelObject

The ISCModelObject interface represents an object in a model.

The following table contains the methods for the ISCModelObject interface:
Method Description
SC_ModelObjectFlags Flags() Returns the flags of the object.
SC_CLSID Classld() Returns the class identifier of the current object.
BSTR ClassName() Returns the class name of the current object.

Appendix A: API Interfaces Reference 109

APl Interfaces

Method Description

ISCModelPropertyCollection * Returns a property collection of the type that you want.
CollectProperties(VARIANT Classlds [optional], VARIANT This method always returns a valid collection even if
MustBeOn [optional], VARIANT MustBeOff [optional]) the collection is empty.

ISCModelObject * Context() Passes back the context (parent) of the object in the
model's object tree. Passes back NULL if the current
object is the tree root.

VARIANT_BOOL IsinstanceOf(VARIANT Classld) Returns TRUE if self is an instance of the passed class.
This method respects inheritance. If Classld contains an
ancestor class, the method returns TRUE.

VARIANT_BOOL IsValid() Returns TRUE if self is valid. This method is used to
detect if the referenced object is deleted.

BSTR Name() Returns the name or a string identifier of the current
object.

SC_OBIID Objectld() Uniquely identifies the current object.

ISCModelPropertyCollection * Properties() Returns a property collection of all available properties.

Note: More information about SC_ModelObjectFlags is located in the Enumerations (see
page 153) section.

ISCModelObject::CollectProperties Arguments

Here is the signature for the CollectProperties function:

ISCModelPropertyCollection * CollectProperties(VARIANT Classlds, VARIANT MustBeOn, VARIANT MustBeOff)

The following table contains the valid arguments for the CollectProperties function:

Parameter Valid Type/Value Description
Classlds [optional] Empty All properties of the object are
returned.

Classlds [optional] VT_ARRAY|VT_BSTR — SAFEARRAY Provides a list of property class
of property IDs identifiers.

Classlds [optional] VT_ARRAY|VT_BSTR — SAFEARRAY Provides a list of property class
of property names names.

Classlds [optional] VT_BSTR — ID of a property Identifies a property class.

Classlds [optional] VT_BSTR — Name of a property Identifies a property class.

Classlds [optional] VT_BSTR — List of IDs delimited by Provides a list of property class
semicolons identifiers.

110 API Reference Guide

API Interfaces

Parameter

Valid Type/Value

Description

Classlds [optional]

VT_BSTR — List of property names
delimited by semicolons

Provides a list of property class
names.

MustBeOn [optional]

Empty

Defaults to SCD_MPF_DONT_CARE
which indicates no filtering.

MustBeOn [optional]

VT_l4 — SC_ModelObjectFlags flags
that must be on

Identifies the properties with the
specified flags set.

MustBeOff [optional]

Empty

Defaults to SCD_MPF_DONT_CARE
which indicates no filtering

MustBeOff [optional]

VT_l4 — SC_ModelObjectFlags flags
that must be off

Identifies the properties that do not
have the specified flags.

Note: For information about valid property class identifiers and valid property class
names, see the HTML document erwin Metamodel Reference, in the Metamodel
Reference Bookshelf located in the erwin® Data Modeler installation folder. More
information about SC_ModelObjectFlags is located in the Enumerations (see page 153)
section.

ISCModelObject::IsinstanceOf Arguments

Here is the signature for the IsinstanceOf function:

VARIANT_BOOL IsInstanceOf(VARIANT Classld)

The following table contains the valid arguments for the IsinstanceOf function:

Parameter Valid Type/Value Description

Classld VT_BSTR — ID of an object class Identifies a target object class by the
given identifier.

Classld VT_BSTR — Name of an object class Identifies an object class by the

given name.

Note: For information about valid object class names and identifiers, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin Data Modeler installation folder.

Appendix A: API Interfaces Reference 111

APl Interfaces

ISCModelObjectCollection

The ISCModelObjectCollection interface is a collection of objects in the model that is
connected to the active session. Membership in this collection can be limited by

establishing filter criteria.

The following table contains the methods for the ISCModelObjectCollection interface:

Method

Description

IUnknown _NewEnum()

Constructs an instance of the collection enumerator
object.

ISCModelObject * Add(VARIANT Class, VARIANT
Objectld)

Adds an object of type Class to the model.

SC_CLSID * Classlds()

Returns a SAFEARRAY of class identifiers (such as object
type IDs).

Represents a value of the Model Object collection
attribute that limited the membership in the collection
at the time when this collection was created and can be
used for reference purposes.

Classlds contains a list of acceptable class identifiers
(such as object types). If this list is non-empty, the
collection includes only those objects whose class
identifier appears in the list. If the list is empty or
returns a NULL pointer, then all objects are included.

BSTR * ClassNames()

Similar to Classlds except that it returns a SAFEARRAY
of class names (such as object type names).

ISCModelObjectCollection * Collect(VARIANT Root,
VARIANT Classld [optional], VARIANT Depth [optional],
VARIANT MustBeOn [optional], VARIANT MustBeOff
[optional])

Creates a collection of Model Objects, which represents
a subcollection of itself. All filtering criteria specified in
the Collect call is applied toward membership in the
collection.

The method creates a valid collection even though the
collection may be empty.

All enumerations are depth-first.

long Count()

Number of objects in the collection. The number does
not include the root object.

long Depth()

Depth limit on iteration in the collection. -1 represents
unlimited depth.

ISCModelObject * Item(VARIANT nindex, VARIANT Class
[optional])

Returns an /Unknown pointer for a Model Object
component identified by the Index parameter.

SC_ModelObjectFlags MustBeOff()

Filter on model object flags in the collection.

SC_ModelObjectFlags MustBeOn()

Filter on model object flags in the collection.

112 API Reference Guide

API Interfaces

Method Description
VARIANT_BOOL Remove(VARIANT Object) Removes the specified model object from a model.
ISCModelObject * Root() Returns a pointer to the root object in a collection.

Note: For information about valid object class names and identifiers, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin Data Modeler installation folder.

ISCModelObjectCollection::Add Arguments

Here is the signature for the Add function:

ISCModelObject * Add(VARIANT Class, VARIANT Objectid)

The following table contains the valid arguments for the Add function:

Parameter Valid Type/Value Description

Class VT_BSTR — Name of a class Identifies an object class by the
given class name.

Class VT_BSTR — Class ID of an object type Identifies an object class by the
given identifier.

Objectld [optional] Empty The API assigns an object identifier
for a new object.

Objectld [optional] VT_BSTR — Object ID for a new The API assigns the given object

object identifier to the new object.

Note: For information about valid object class names and identifiers, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin Data Modeler installation folder.

Appendix A: API Interfaces Reference 113

APl Interfaces

ISCModelObjectCollection::Collect Arguments

Here is the signature for the Collect function:

ISCModelObjectCollection * Collect(VARIANT Root, VARIANT Classld, VARIANT Depth, VARIANT MustBeOn, VARIANT

The following table contains the valid arguments for the Collect function:

Parameter Valid Type/Value Description

Root VT_UNKNOWN — ISCModelObject Provides a context (parent) object
pointer of the root object for the collection.

Root VT_BSTR — ID of the root object Provides a context (parent) object

for the collection.

Classld [optional]

VT_ARRAY|VT_BSTR — SAFEARRAY
of class IDs

Contains a list of acceptable class
identifiers.

Classld [optional]

VT_ARRAY|VT_BSTR — SAFEARRAY
of class names

Contains a list of acceptable class
names.

Classld [optional]

VT_BSTR —Class ID

Provides a class identifier for a
monotype collection.

Classld [optional]

VT_BSTR — Semicolon delimited list
of class IDs

Contains a list of acceptable class
identifiers.

Classld [optional]

VT_BSTR — Class name

Provides a type name for a
monotype collection.

Classld [optional]

VT_BSTR — Semicolon delimited list
of class names

Contains a list of acceptable class
names.

Classld [optional]

Empty

Returns all descendents regardless
of class type.

Depth [optional]

VT_l4 — Maximum depth for
descendents. Depth of 1 returns the
immediate children of the root. A
depth of -1 (which is the default
value) represents unlimited depth.

Returns the descendents of the root
at a depth no more than the given
depth.

Depth [optional]

Empty

Returns all descendents of the root
(unlimited depth).

MustBeOn [optional]

VT_l4 — SC_ModelObjectFlags that
must be set

Provides a set of required flags.

MustBeOn [optional]

Empty

Defaults to SCD_MOF_DONT _CARE.

114 API Reference Guide

API Interfaces

Parameter Valid Type/Value Description

MustBeOff [optional] VT_l4 — SC_ModelObjectFlags that Provides a set of flags that must not
must not be set be set.

MustBeOff [optional] Empty Defaults to SCD_MOF_DONT_CARE.

Note: For information about valid object class names and identifiers, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin Data Modeler installation folder. More information about
SC_ModelObjectFlags is located in the Enumerations (see page 153) section.

ISCModelObjectCollection::Item Arguments

Here is the signature for the /tem function:

ISCModelObject * Item(VARIANT nindex, VARIANT Class)

The following table contains the valid arguments for the /tem function:

Parameter Valid Type/Value Description

nindex VT_UNKNOWN - Pointer to Identifies an object with the Model
ISCModelObject interface Object pointer.

nindex VT_BSTR - ID of an object Identifies an object with the given

object identifier.

nindex VT_BSTR — Name of an object If the name of an object is used, the
Class parameter must also be used.
Identifies an object with the given
name and given object class.

Class [optional] Empty Only if nindex is not an object name.

Class [optional] VT_BSTR — Name of a class Must be used if the nindex
parameter is the name of an object.
Identifies an object class name.

Class [optional] VT_BSTR — Class ID of object type Must be used if the nindex
parameter is the name of an object.
Identifies an object class identifier.

Note: For information about valid object class names and identifiers, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin Data Modeler installation folder.

Appendix A: API Interfaces Reference 115

APl Interfaces

ISCModelObjectCollection::Remove Arguments

Here is the signature for the Remove function:

VARIANT_BOOL Remove(VARIANT Object)

The following table contains the valid arguments for the Remove function:

Parameter Valid Type/Value Description
Object VT_UNKNOWN. ISCModelObject — Identifies the removed object by the
pointer to an object Model Object pointer.
Object VT_BSTR — ID of the object Identifies the removed object by the
object's identifier.
ISCModelProperty
The ISCModelProperty interface represents a property of a given object.
The following table contains the methods for the ISCModelProperty interface:
Method Description

BSTR ClassName()

Returns the class name of the property.

BSTR FormatAsString()

Formats the property value as a string.

ISCPropertyValueCollection * PropertyValues()

Returns the collection of values for the model property

long Count()

Contains the number of values in the property.

SC_CLSID Classld()

Returns the class identifier of the property.

SC_ModelPropertyFlags Flags()

Returns the flags of the property.

SC_ValueTypes DataType(VARIANT Valueld [optional])

Passes back the identifier of the native value type for
the indicated property value.

VARIANT_BOOL GetValueFacetlds(Long*
FacetsTrueBasket, Long* FacetsFalseBasket)

Retrieves available property facet IDs.
FacetsTrueBasket is a SAFEARRAY of facet ID numbers.
The listed facets have TRUE as a value.
FacetsFalseBasket is a SAFEARRAY of facet ID numbers.
The listed facets have FALSE as a value.

The method returns FALSE if the property does not
have a value.

116 API Reference Guide

API Interfaces

Method

Description

VARIANT_BOOL GetValueFacetNames(BSTR*
FacetsTrueBasket,BSTR* FacetsFalseBasket)

Retrieves available property facet names.

FacetsTrueBasket is a SAFEARRAY of facet name strings.
The listed facets have TRUE as a value.

FacetsFalseBasket is a SAFEARRAY of facet name
strings. The listed facets have FALSE as a value.

The method returns FALSE if the property does not
have a value.

VARIANT_BOOL IsValid()

Returns TRUE if self is valid.

VARIANT_BOOL RemoveAllValues()

Removes all values from the property.

VARIANT_BOOL RemoveValue(VARIANT Valueld
[optional])

Removes the specified value from the property. If no
values remain after the removal, the property has a
NULL value.

Returns TRUE if the value was removed.

VARIANT Value(VARIANT Valueld [optional], VARIANT
ValueType [optional])

Retrieves the indicated property value in the requested
format.

Void SetValueFacets(VARIANT* FacetsTrueBasket,
VARIANT* FacetsFalseBasket)

Assigns new values to the property facets.

FacetsTrueBasket is a list of facets to be set to TRUE. It
is either a SAFEARRAY of facet ID numbers, a
SAFEARRAY of facet name strings, or a string with
semicolon-separated facet names.

FacetsFalseBasket is a list of facets to be set to FALSE. It
is either a SAFEARRAY of facet ID numbers, a
SAFEARRAY of facet name strings, or a string with
semicolon-separated facet names.

The method returns FALSE if the property does not
have a value

void Value(VARIANT Valueld [optional], VARIANT
ValueType [optional], VARIANT Val)

Sets the indicated property value with the given value.

Note: For information about valid property class identifiers and valid property class
names, see the HTML document erwin Metamodel Reference, in the Metamodel
Reference Bookshelf located in the erwin® Data Modeler installation folder. More
information about SC_ModelPropertyFlags is located in the Enumerations (see
page 153) section. More information about property datatypes is located in the

SC ValueTypes (see page 156) section.

Appendix A: API Interfaces Reference 117

APl Interfaces

ISCModelProperty::DataType Arguments

Here is the signature for the DataType function:

SC_ValueTypes DataType(VARIANT Valueld)

The following table contains the valid arguments for the DataType function:

Parameter

Valid Type/Value

Description

Valueld

Empty

Valid if a property is scalar or if all
elements of a multi-valued property
have the same datatype.

Valueld

VT_l4 - Index

Ignored if the property is scalar.
Identifies an element in a
multi-valued property with a
zero-based index.

Valueld

VT_BSTR — Name of a non-scalar
element

Ignored if the property is scalar. If
the property is multi-valued,
indicates an element by name.

ISCModelProperty::RemoveValue Arguments

Here is the signature for the RemoveValue function:

VARIANT_BOOL RemoveValue(VARIANT Valueld)

The following table contains the valid arguments for the RemoveValue function:

Parameter Valid Type/Value Description

Valueld Empty Valid for a scalar property only.

Valueld VT_l4 — Index Ignored if the property is scalar.
Identifies an element in a
multi-valued property with a
zero-based index.

Valueld VT_BSTR — Name of a non-scalar Ignored if the property is scalar. If

element

the property is multi-valued,
indicates an element by name.

118 API Reference Guide

API Interfaces

ISCModelProperty::Value Arguments (Get Function)

Here is the signature for the Value (Get) function:

VARIANT Value(VARIANT Valueld, VARIANT ValueType)

The following table contains the valid arguments for the Value (Get) function:

Parameter Valid Type/Value Description

Valueld [optional] Empty Valid for a scalar property only.

Valueld [optional] VT_BSTR — Name of a non-scalar Ignored if the property is scalar. If
element the property is multi-valued,

indicates an element by name.

Valueld [optional] VT_l4 —Index of a non-scalar Ignored if the property is scalar. If
element the property is multi-valued,
indicates an element by a
zero-based index.

ValueType [optional] Empty Indicates a native datatype for
return values.

ValueType [optional] VT_l4 — SCVT_DEFAULT Indicates a native datatype for
return values.

ValueType [optional] VT_l4 —SCVT_BSTR Indicates a conversion to a string for
return values.

ISCModelProperty::Value Arguments (Set Function)

Here is the signature for the Value (Set) function:

void Value(VARIANT Valueld, VARIANT ValueType, VARIANT Val)

The following table contains the valid arguments for the Value (Set) function:

Parameter Valid Type/Value Description
Valueld [optional] Empty Valid for a scalar property only.
Valueld [optional] VT_l4 — Index of a non-scalar Indicates a value position with a
property zero-based index in a non-scalar
property.

A value of -1 causes a new value to
be added at the end of the vector.

Valueld [optional] VT_BSTR — Name of the element in a Indicates a value position with the
multi-valued property given name.

Appendix A: API Interfaces Reference 119

APl Interfaces

Parameter Valid Type/Value Description
ValueType [optional] Empty Not used
Val Dependent upon the property type

ISCModelProperty::GetValueFacetlds Arguments

Here is the signature for the GetValueFacetlds function:

VARIANT_BOOL GetValueFacetlds(Long* FacetsTrueBasket, Long* FacetsFalseBasket)

The following table contains the valid arguments for the GetValueFacetlds function:

Parameter Valid Type/Value Description

FacetsTrueBasket SAFEARRAY(VT_l4) — Array of facet Lists facets that are set and have
IDs TRUE as a value.

FacetsFalseBasket SAFEARRAY(VT_l4) — Array of facet Lists facets that are set and have
IDs FALSE as a value.

Note: More information about FacetsTrueBasket and FacetsFalse Basket is located in
the Property Bag for Application Environment (see page 157) section.

ISCModelProperty::GetValueFacetNames Arguments

Here is the signature for the GetValueFacetNames function:

VARIANT_BOOL GetValueFacetNames(BSTR* FacetsTrueBasket, BSTR* FacetsFalseBasket)

The following table contains the valid arguments for the GetValueFacetNames function:

Parameter Valid Type/Value Description

FacetsTrueBasket SAFEARRAY(VT_BSTR) — Array of Lists facets that are set and have
facet names TRUE as a value.

FacetsFalseBasket SAFEARRAY(VT_BSTR) — Array of Lists facets that are set and have
facet names FALSE as a value.

Note: More information about FacetsTrueBasket and FacetsFalse Basket is located in
the Property Bag for Application Environment (see page 157) section.

120 API Reference Guide

API Interfaces

ISCModelProperty::SetValueFacets Arguments

Here is the signature for the SetValueFacets function:

void SetValueFacets(VARIANT FacetsTrueBasket, VARIANT FacetsFalseBasket)

The following table contains the valid arguments for the SetValueFacets function:

Parameter Valid Type/Value Description

FacetsTrueBasket SAFEARRAY(VT_I4) — array of A list of facets to be set to TRUE.
facet IDs

FacetsTrueBasket SAFEARRAY(VT_BSTR) —array of A list of facets to be set to TRUE.
facet names

FacetsTrueBasket VT_BSTR — string with facet A list of facets to be set to TRUE.
names separated by semicolon

FacetsFalseBasket SAFEARRAY(VT_l4) — array of A list of facets to be set to FALSE.
facet IDs

FacetsFalseBasket SAFEARRAY(VT_BSTR) —array of A list of facets to be set to FALSE.

facet names

FacetsFalseBasket VT_BSTR — string with facet A list of facets to be set to FALSE.
names separated by semicolon

Note: More information about FacetsTrueBasket and FacetsFalse Basket is located in
the Property Bag for Application Environment (see page 157) section.

ISCModelPropertyCollection

The ISCModelPropertyCollection interface is a collection of properties for a given model
object. Membership in this collection can be limited by establishing filter criteria.

The following table contains the methods for the ISCModelPropertyCollection interface:

Method Description

IlUnknown _NewEnum() Constructs an instance of the collection enumerator
object.

ISCModelProperty * Add(VARIANT Classld) Construct a new property for a bound model object if it

does not exist.

Appendix A: API Interfaces Reference 121

APl Interfaces

Method

Description

SC_CLSID * Classlds()

Returns a SAFEARRAY of property class identifiers in the
property collection.

Represents a value of the ModelProperties collection
attribute that limited the membership at the time when
this collection was created and can be used for
reference purposes.

Classlds contain an array of acceptable class identifiers
(such as property classes). If this list is non-empty, the
property collection includes only those properties
whose class identifier appears on the list. If the list is
empty or the caller supplies a NULL pointer, the
collection includes all the properties owned by the
object.

BSTR * ClassNames()

Same as the Classlds property, but returns a
SAFEARRAY of property type names in the property
collection.

long Count()

Number of properties in the collection.

VARIANT_BOOL HasProperty(VARIANT Classld,
VARIANT MustBeOn [optional], VARIANT MustBeOff
[optional])

Returns TRUE if the object owns a property of the
passed class.

Treats properties as absent if they fail to satisfy
Classlds, MustBeOn, and MustBeOff attributes of the
collection.

Alternative MustBeOn, MustBeOff can be offered using
optional parameters.

VARIANT_BOOL HasPropertyFacets(VARIANT Classld,
VARIANT MustBeOn [optional], VARIANT MustBeOff
[optionall],

VARIANT FacetsMustBeSet [optional])

Returns TRUE if the object owns a property of the
passed class.

Treats properties as absent if they fail to satisfy
Classlds, MustBeOn, and MustBeOff attributes of the
collection.

Alternative FlagsMustBeOn, FlagsMustBeOff,
FacetsMustBeSet can be offered using optional
parameters.

FacetsMustBeSet indicates that a property must have
one or more facets. The parameter can be either a
SAFEARRAY of the facet's ID numbers, a SAFEARRAY of
the facet's name strings, or a string with facet names
separated by a semicolon.

122 APl Reference Guide

API Interfaces

Method Description

ISCModelProperty * Item(VARIANT Class) Returns a model object property.

The method checks if the property exists. If it does not,
the method creates a property description, returns an
ISCModelProperty instance, and sets the NULL flag for
the property. A new property value can be set by using
the Value property of the instance. However, it will fail
to retrieve a value before it is set.

The method allows you to create an instance of
ISCModelProperty for properties like ReadOnly,
Maintained By the Tool, and so on. The value for these
properties cannot be changed or assigned. Yet property
flags, datatype, and so on are available even when the
collection does not have the property instance. Use
HasProperty to check on the existence of the property
for a model object instance.

SC_ModelPropertyFlags MustBeOff() Filter on property flags in the collection. The filter is set
when the property collection is created through the
ISCModelObject::CollectProperties method.

SC_ModelPropertyFlags MustBeOn() Filter on property flags in the collection. The filter is set
when the property collection is created through the
ISCModelObject::CollectProperties method.

VARIANT_BOOL Remove(VARIANT Classld) Removes the indicated property from the bound object.

Successful execution of the call renders all binds with
the removed property invalid. The client should release
all ISCModelProperty pointers, and all related Value
Collection and Value pointers known to represent such
an association. Calls to interfaces fail and the IsValid
method returns FALSE.

Note: For information about valid property class identifiers and valid property class
names, see the HTML document erwin Metamodel Reference, in the Metamodel
Reference Bookshelf located in the erwin® Data Modeler installation folder. More
information about SC_ModelPropertyFlags is located in the Enumerations (see
page 153) section.

Appendix A: API Interfaces Reference 123

APl Interfaces

ISCModelPropertyCollection::Add Arguments

Here is the signature for the Add function:

ISCModelProperty * Add(VARIANT Classid)

The following table contains the valid arguments for the Add function:

Parameter Valid Type/Value Description

Classld VT_BSTR — Name of a property class Provides a new property type name.

Classld VT_BSTR - ID of a property Provides a new property class
identifier.

Note: For information about valid property class identifiers and valid property class
names, see the HTML document erwin Metamodel Reference, in the Metamodel
Reference Bookshelf located in the erwin® Data Modeler installation folder.

ISCModelPropertyCollection::HasProperty Arguments

Here is the signature for the HasProperty function:

VARIANT_BOOL HasProperty(VARIANT Classld, VARIANT MustBeOn, VARIANT MustBeOff)

The following table contains the valid arguments for the HasProperty function:

Parameter Valid Type/Value Description
Classld VT_BSTR — Name of a property Identifies a class name for a
property.
Classld VT_BSTR - ID of a property Identifies a class identifier for a
property.
MustBeOn [optional] VT_l4 —SC_ModelPropertyFlags that Provides a set of required flags.
must be set
MustBeOn [optional] Empty Default is set to the MustBeOn filter
that was used to create the property
collection.
MustBeOff [optional] VT_l4 — SC_ModelPropertyFlags that Provides a set of flags that must not
must not be set be set.
MustBeOff [optional] Empty Default is set to the MustBeOff filter
that was used to create the property
collection.

124 API| Reference Guide

API Interfaces

Note: For information about valid property class identifiers and valid property class
names, see the HTML document erwin Metamodel Reference, in the Metamodel
Reference Bookshelf located in the erwin® Data Modeler installation folder. More
information about SC_ModelPropertyFlags is located in the Enumerations (see
page 153) section.

ISCModelPropertyCollection::HasPropertyFacets Arguments

Here is the signature for the HasPropertyFacets function:

VARIANT_BOOL HasPropertyFacets(VARIANT Classld, VARIANT FlagsMustBeOn, VARIANT FlagsMustBeOff, VARIANT
FacetsMustBeSet)

The following table contains the valid arguments for the HasPropertyFacets function:

Parameter Valid Type/Value Description

Classld VT_BSTR — Name of a property Identifies a class name for a
property.

Classld VT_BSTR - ID of a property Identifies a class identifier for a

property.

FlagsMustBeOn [optional]

VT_l4 — SC_ModelPropertyFlags that
must be set

Provides a set of required flags.

FlagsMustBeOn [optional]

Empty

Default is set to the MustBeOn filter
that was used to create the property
collection.

FlagsMustBeOff [optional]

VT_l4 —SC_ModelPropertyFlags that
must not be set

Provides a set of flags that must not
be set.

FlagsMustBeOff [optional]

Empty

Default is set to the MustBeOff filter
that was used to create the property
collection.

FacetsMustBeSet [optional]

SAFEARRAY(VT_l4) — array of facet
IDs

Indicates one or more facets that a
property must have.

FacetsMustBeSet [optional]

SAFEARRAY(VT_BSTR) — array of
facet names

Indicates one or more facets that a
property must have.

FacetsMustBeSet [optional]

VT_BSTR — string with facet names
separated by semicolon

Indicates one or more facets that a
property must have.

FacetsMustBeSet [optional]

Empty

No facet requirements

Appendix A: API Interfaces Reference 125

APl Interfaces

Note: For information about valid property class identifiers and valid property class
names, see the HTML document erwin Metamodel Reference, in the Metamodel
Reference Bookshelf located in the erwin® Data Modeler installation folder. More
information about SC_ModelPropertyFlags is located in the Enumerations (see

page 153) section. More information about FacetsMustBeSet is located in the Property
Bag for Application Environment (see page 157) section.

ISCModelPropertyCollection::ltem Arguments

Here is the signature for the /tem function:

ISCModelProperty * ltem(VARIANT Class)

The following table contains the valid arguments for the Item function:

Parameter Valid Type/Value Description

Class VT_BSTR - ID of a property Provides the property class
identifier.

Class VT_BSTR — Name of a property Provides the property class name.

Note: For information about valid property class identifiers and valid property class
names, see the HTML document erwin Metamodel Reference, in the Metamodel
Reference Bookshelf located in the erwin® Data Modeler installation folder.

ISCModelPropertyCollection::Remove Arguments

Here is the signature for the Remove function:

VARIANT_BOOL Remove(VARIANT Classid)

The following table contains the valid arguments for the Remove function:

Parameter Valid Type/Value Description

Classld ISCModelProperty * Identifies a property with a Model
Property object.

Classld VT_BSTR — Name of the property Identifies the property with a class
name.

Classld VT_BSTR — ID of the property Identifies the property with a class
identifier.

Note: For information about valid property class identifiers and valid property class
names, see the HTML document erwin Metamodel Reference, in the Metamodel
Reference Bookshelf located in the erwin® Data Modeler installation folder.

126 API Reference Guide

API Interfaces

ISCModelSet
A Model Set component provides access to a member of a hierarchically organized
collection of model sets.
The following table contains the methods for the ISCModelSet interface:

Method Description

SC_MODELTYPEID Classld()

Class identifier for metadata associated with the model
set.

BSTR ClassName()

Class name for metadata associated with the model set.

VARIANT_BOOL DirtyBit()

Returns a flag that indicates that the data has changed
in the model set.

void DirtyBit(VARIANT_BOOL)

Sets the flag that indicates that the data in the model
set has changed.

SC_MODELTYPEID ModelSetld()

Passes back an identifier for the model set.

BSTR Name()

Passes back a persistence unit name.

ISCModelSet * Owner()

A pointer to the owner model set. Returns NULL for the
top model set in the persistence unit.

ISCModelSetCollection * OwnedModelSets()

Provides a collection with directly owned model sets.

SC_MODELTYPEID PersistenceUnitld()

The identifier for the persistence unit that contains the
model set.

ISCPropertyBag * PropertyBag(VARIANT List [optional],
VARIANT AsString [optional])

Returns a property bag with the model set's properties.

A model set property is present in the resulting bag
only if it has a value. If the property does not have any
value set, the property bag will not have the property
listed.

void PropertyBag(VARIANT List [optional], VARIANT
AsString [optional], ISCPropertyBag * propBag)

Sets a model set with the properties in the given
property bag.

Note: For information about metadata class identifiers and names, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin® Data Modeler installation folder.

Appendix A: API Interfaces Reference 127

APl Interfaces

ISCModelSet::PropertyBag Arguments (Get Function)

Here is the signature for the PropertyBag (Get) function:

ISCPropertyBag * PropertyBag(VARIANT List, VARIANT AsString)

The following table contains the valid arguments for the PropertyBag (Get) function:

Parameter Valid Type/Value Description
List [optional] VT_BSTR — Semicolon separated list Provides a list of the model set
of properties properties. If the list is provided,

only listed properties are placed in
the returned property bag.

List [optional] Empty Requests a complete set of
properties.
AsString [optional] VT_BOOL — TRUE or FALSE If set to TRUE, requests that all

values in the bag to be presented as
strings. The default is FALSE with all
values in their native format.

AsString [optional] Empty All values in the property bag are
presented in native type.

Note: More information about property names is located in the Property Bag for
Persistence Units and Persistence Unit Collections (see page 167) section.

ISCModelSet::PropertyBag Arguments (Set Function)

Here is the signature for the PropertyBag (Set) function:

void PropertyBag(VARIANT List, VARIANT AsString, ISCPropertyBag * propBag)

The following table contains the valid arguments for the PropertyBag (Set) function:

Parameter Valid Type/Value Description

List [optional] Not used

AsString [optional] Not used

propBag ISCPropertyBag * A pointer on a property bag with the

model set properties to process.

128 API Reference Guide

API Interfaces

ISCModelSetCollection

A Model Set Collection contains all model sets directly owned by an owner model set.

The following table contains the methods for the ISCModelSetCollection interface:

Method Description

IUnknown _NewEnum() Constructs an instance of a model set enumerator
object.

long Count() Number of model sets in the collection.

ISCPersistenceUnit * ltem(VARIANT nindex) Passes back a pointer for a ModelSet component.

ISCModelSet * Owner() Returns a pointer to the owner model set.

ISCModelSetCollection::Iltem Arguments

Here is the signature for the /tem function:

ISCModelSet * Item(VARIANT nindex)

The following table contains the valid arguments for the /tem function:

Parameter Valid Type/Value Description

nindex VT_UNKNOWN — Pointer to Creates a clone for the Model Set
ISCPersistenceUnit object.

nindex VT_l4 —Index of a model setinthe Ordered position in the collection.
model set collection The index is zero-based.

nindex VT_BSTR — Model Set ID Model set identifier.

nindex VT_BSTR — Metadata Class ID Class identifier for metadata

associated with a model set.

nindex VT_BSTR — Metadata Class name Class name for metadata associated
with a model set.

Note: For information about metadata class identifiers and names, see the HTML
document erwin Metamodel Reference, in the Metamodel Reference Bookshelf located
in the erwin® Data Modeler installation folder.

Appendix A: API Interfaces Reference 129

APl Interfaces

ISCPersistenceUnit

A Persistence Unit encapsulates the information required to connect to an existing,
outer level persistence unit within an application.

The following table contains the methods for the ISCPersistenceUnit interface:

Method

Description

VARIANT_BOOL DirtyBit()

Returns a flag that indicates that the data has changed
in the persistence unit.

void DirtyBit(VARIANT _BOOL)

Sets the flag that indicates that the data in the
persistence unit has changed.

VARIANT_BOOL HasSession()

Returns TRUE if a unit has one or more sessions
connected.

VARIANT_BOOL IsValid()

Returns TRUE if self is valid.

ISCModelSet * ModelSet()

Passes back a pointer on the top model set in the
Persistence Unit.

BSTR Name()

Passes back a persistence unit name.

SC_MODELTYPEID Objectld()

Passes back an identifier for the persistence unit.

ISCPropertyBag * PropertyBag(VARIANT List [optional],
VARIANT AsString [optional])

Returns a property bag with the persistence unit's
properties.
A unit property is present in the resulting bag only if it

has a value. If the property does not have any value set,
the property bag will not have the property listed.

void PropertyBag(VARIANT List [optional], VARIANT
AsString [optional], ISCPropertyBag * propBag)

Sets a persistence unit with the properties in the given
property bag.

VARIANT_BOOL Save(VARIANT Locator [optional],
VARIANT Disposition [optional])

Persists model data to external storage. Uncommitted
transactions are ignored.

Note: More information about property descriptions is located in the Property Bag for
Persistence Units and Persistence Unit Collections (see page 167) section.

130 API Reference Guide

API Interfaces

ISCPersistenceUnit::PropertyBag Arguments (Get Function)

Here is the signature for the PropertyBag (Get) function:

ISCPropertyBag * PropertyBag(VARIANT List, VARIANT AsString)

The following table contains the valid arguments for the PropertyBag (Get) function:

Parameter Valid Type/Value Description
List [optional] VT_BSTR — Semicolon separated list Provides a list of the unit properties.
of properties If the list is provided, only listed

properties are placed in the
returned property bag.

List [optional] Empty Requests a complete set of
properties.
AsString [optional] VT_BOOL - TRUE or FALSE If set to TRUE, it requests that all

values in the bag be presented as
strings. The default is FALSE and all
values are in their native format.

AsString [optional] Empty All values in the property bag are
presented in native type.

Note: More information about valid property names is located in the Property Bag for
Persistence Units and Persistence Unit Collections (see page 167) section.

ISCPersistenceUnit::PropertyBag Arguments (Set Function)

Here is the signature for the PropertyBag (Set) function:

void PropertyBag(VARIANT List, VARIANT AsString, ISCPropertyBag * propBag)

The following table contains the valid arguments for the PropertyBag (Set) function:

Parameter Valid Type/Value Description

List [optional] Not used

AsString [optional] Not used

propBag ISCPropertyBag * A pointer on a property bag with the

unit properties to process.

Appendix A: API Interfaces Reference 131

APl Interfaces

ISCPersistenceUnit::Save Arguments

Here is the signature for the Save function:

VARIANT_BOOL Save(VARIANT Locator, VARIANT Disposition)

The following table contains the valid arguments for the Save function:

Parameter

Valid Type/Value

Description

Locator [optional]

VT_BSTR — Full path to a storage
location

Provides a new location for the
persistence unit data source as a
string with a file or mart item
location, along with the attributes
required for successful access to
storage.

Locator [optional]

Empty

Indicates the use of the original
persistence unit location.

Disposition [optional]

VT_BSTR — List of keywords
parameters

Specifies changes in access
attributes, such as read-only.

ISCPersistenceUnit::ReverseEngineer

Note: More information about the format of the Locator parameter is located in the
Locator Property section.

Here is the signature for the ReverseEngineer function:

HRESULT ReverseEngineer ([in]ISCPropertyBag * PropertyBag, [in]VARIANT REoptionpath,[in] VARIANT
REConnectionString,[in] VARIANT REPassword);

The following table contains the valid arguments for the ReverseEngineer function:

Parameter Valid Type/Value Description

PropertyBag ISCPropertyBag * — Pointer to a Contains options for reverse
Property Bag object. engineering.

REoptionpath VT_BSTR - Path. Specifies the full path to the items

storage for reverse engineering.

REConnectionString

VT_BSTR — Database connection
string.

Identifies the database connect
string.

REPassword

VT_BSTR — Connection password.

Null for windows authentication.

Identifies the password used for
database connection.

132 API Reference Guide

API Interfaces

The following table contains the valid arguments for the PropertyBag parameter.

Parameter

Valid Type/Value

Description

System_objects

VT_BOOL -- True or False.

Default: False

Retrieves system objects.
True: System objects are retrieved.

False: System objects are not
retrieved.

Oracle_Use_DBA_Views

VT_BOOL — True or False

Default: False. Only valid for
Oracle.

Use DBA Views for reverse
engineering.
True: Use DBA Views.

False: Do not use DBA Views.

Synch_Table_Filter_By_Name

VT_BSTR
Default: Null

Reverse engineers the tables that
contain the input filter
strings.Multiple filter strings are
specified as comma separated
values.

Synch_Owned_Only

VT_BOOL - True or False.

Default: False

Retrieves tables and views of users.

True: Retrieve from current user or
owners.

False: Retrieve from all.

Synch_Owned_Only_Name VT_BSTR Reverse engineers tables and views
Default: Null owned by the specified users.

Case_Option 25090:None Specifies the case conversion option
25091:lower for physical names.

25092:Upper

Default: None

Logical_Case_Option

25045: None
25046: UPPER
25047: lower
25048:Mixed

Default: None

Specifies the case conversion option
for logical names.

Infer_Primary_Keys

VT_BOOL-True or False.

Default: None

Infers primary key columns for the
tables that are based on defined
indexes.

True: Primary Keys option is
selected.

False: Primary Keys option is not
selected.

Appendix A: APl Interfaces Reference 133

APl Interfaces

Parameter

Valid Type/Value

Description

Infer_Relations

VT_BOOL- True or False.

Default: False

Infers the relationships between
tables that are based on either
primary key column names or
defined indexes.

True: Relations Option is selected.

False: Relations Option is not
selected.

Infer_Relations_Indexes

VT_BOOL- True or False.

Note: Set the value to Indexes or
Names when Infer_Relations is
set to Relations.

Default: False.

Infers the relationships from the
table indexes.

True: Indexes option is selected.

False: Names option is selected.

Remove_ERwin_Generated_Triggers

VT_BOOL—True or False.

Default: True.

Removes erwin generated triggers.

True: Remove Include Generated
Triggers.

False: Do not remove Include
Generated Triggers.

Force_Physical_Name_Option

VT_BOOL—True or False.

Default: Force

Overrides the physical name
property for all objects in
logical/physical models
automatically during reverse
engineering.

True: Force physical name option.

False: Do not force physical name
option.

134 API Reference Guide

API Interfaces

Connection String

Server=<Target Server type>:<MajorVersion>:<MinorVersion>

| AUTHENTICATION=<AuthenticationType>| USER=<UserName>| <ServerParameter>=<ServerParameterValue>

Example:

SERVER=16:10:0| AUTHENTICATION=4| USER=erwin | 1=3| 2=r8|3=127.0.0.1\\erwin_mart01

The following table describes the valid values for a connection string.

Parameter

Value

Description

SERVER

<T

argetServerType> is an

integer value.

1
2
3
4
5
6:
7
8
9
9

: Access

: DB2

: DB2UDB
: Foxpro

: Inforrmix

Ingres

: ISeries

: MysalL

: ODBC

: PostgreSQL
10:
11:
12:
13:
14:
15:
16:
17:
18:
19.

Oracle
Progress
Redbrick
SAS
Sybase
SybaselQ
SQLServer
Teradata
SQLAzure

Hive

Specifies the type of the
database server.

AUTHENTICATION

40r8

4.

Database authentication

8: Windows authentication

Specifies the authentication
type.

User

Us

er Name

Specifies the user name.

Appendix A: APl Interfaces Reference 135

APl Interfaces

The following table describes the type and value of ServerParameter:

Server Parameter Server Parameter Value Description
1 2o0r3 2: Indicates "Use ODBC data
source".

3: Indicates "Use Native

Connection"
2 String Identifies the database.
3 String Identifies the server name.
4 String Identifies the alternate

catalog name.

5 String Identifies the ODBC data
source name.

6 String Identifies the connection
string for the database.

7 String Identifies the access
database path.

8 String Identifies the system
database path.

9 String Identifies the password for
access system database.

10 BooleanOor 1 0: ODBC data browse is
turned off.

1: ODBC data browse is
turned on.

11 Boolean O or 1 0: Do not use encrypted
connection.

1: Use encrypted connection.

12 BooleanOor1 0: Do not connect to Oracle
as SYSDBA.

1: Connect to Oracle as
SYSDBA.

13 lor2or3 1: REDB using Hive

Note: Applicable only to 2: REDB using MySQL
Hive Metastore

3: REDB using PostgreSQL
Metastore

136 API Reference Guide

API Interfaces

Note: For the target database, Hive, an additional server parameter, 13, is required as
shown in the following example:

For REDB-PureHive:

Call oPersistenceUnit.ReverseEngineer(oPropertyBag,,
"SERVER=19:2:1| AUTHENTICATION=4 | USER=<hive-user>|1=2|5=<cloudera
dsn>|10=0|13=1", "<hive-password>")

For REDB-Metastore MySQL:

Call oPersistenceUnit.ReverseEngineer(oPropertyBag,,
"SERVER=19:2:1| AUTHENTICATION=4 | USER=<mysgq|-user>|1=2 | 5=<mysq|
dsn>|10=0]13=2", "<mysql-password>")

For REDB-Metastore PostgreSQL:

Call oPersistenceUnit.ReverseEngineer(oPropertyBag,,
"SERVER=19:2:1| AUTHENTICATION=4 | USER=<postgresql-user>| 1=2 | 5=<postgr
esql dsn>|10=0]13=3", "<postgresql-password>")

Reverse Engineering Sample Script:

Dim oAPI
Set 0API = CreateObject("erwin9.SCAPI.9.0")

Dim oPropertyBag
Set oPropertyBag = CreateObject("erwin9.SCAPI.PropertyBag.9.0")

Call oPropertyBag.Add("Model_Type", "Combined")
Call oPropertyBag.Add("Target_Server", 1075859016)
Call oPropertyBag.Add("Target_Server_Version", 10)

Dim oPUnitCol
Set oPUnitCol = oApi.PersistenceUnits

Dim oPersistenceUnit
Set oPersistenceUnit = oPUnitCol.Create(oPropertyBag)

'oPropertyBag = CreateObject("erwin9.SCAPI.PropertyBag.9.0")
'oPropertyBag = oApi.ApplicationEnvironment.PropertyBag
oPropertyBag.ClearAll()

Call oPropertyBag.Add("System_Objects", True)

Call oPropertyBag.Add("Oracle_Use_DBA_Views", False)

Call oPropertyBag.Add("Synch_Owned_Only", False)

Call oPropertyBag.Add("Synch_Owned_Only_Name","")

Call oPropertyBag.Add("Case_Option", 25091)

Call oPropertyBag.Add("Logical_Case_Option", 25046)

Call oPropertyBag.Add("Infer_Primary_Keys", False)

Call oPropertyBag.Add("Infer_Relations", False)

Call oPropertyBag.Add("Infer_Relations_Indexes", False)

Call oPropertyBag.Add("Remove_ERwin_Generated_Triggers", False)

Appendix A: API Interfaces Reference 137

APl Interfaces

Call oPropertyBag.Add("Force_Physical_Name_Option", False)
Call oPropertyBag.Add("Synch_Table_Filter_By_Name","")

Call oPersistenceUnit.ReverseEngineer(oPropertyBag, "c:\\re.xml",
"SERVER=16:10:0| AUTHENTICATION=4 | USER=erwin | 1=3| 2=r8|3=127.0.0.1\\erwin_mart01", "cal23456")

Call oPersistenceUnit.Save("c:\\test.erwin", "OVF=Yes")

ISCPersistenceUnit::ForwardEngineer

Here is the signature for the ForwardEngineer_DB function:

HRESULT FEModel_DB([in] VARIANT Connectioninfo, [in] VARIANT Password, [in] VARIANT OptionXML, [out, retval]
VARIANT_BOOL *ppVal);

The following table contains the valid arguments for the ForwardEngineer function:

Parameter Valid Type/Value Description

ConnectionInfo VT_BSTR Specifies the connection
string to the database.
For more information, see
Connection Sting in
ISCPersistenceUnit::Revers
eEngineer.

Password VT_BSTR Specifies the connection
Null if the authentication password to the database.
type is Windows.

OptionXML VT_BSTR Specifies the full path to

items storage for forward
engineering.

Here is the signature for the ForwardEngineer_DDL function:

HRESULT FEModel_DDL([in] VARIANT Locator, [in] VARIANT OptionXML, [out, retval] VARIANT_BOOL *ppVal);

Parameter Valid Type/Value Description

Locator VT_BSTR Specifies the full path of
the output script file.
(.sqgl/.ddl)

OptionXML VT_BSTR Specifies the full path to
items storage for forward
engineering.

ppVal VT_BOOL Specifies a return value.

138 API Reference Guide

API Interfaces

Forward Engineering Sample Script:

Dim oAPI
Set 0API = CreateObject("erwin9.SCAPI.9.0")
Dim oPersistenceUnit
Set oPersistenceUnit = oApi.PersistenceUnits.Add("c:\\test.erwin", ")
Call
oPersistenceUnit.FEModel_DB("SERVER=16:10:0| AUTHENTICATION=8 | USER=erwin | 1=3 | 2=ModelTest|3=127.0.0.1",
"ca123456", "c:\\fe.xml")
Call oPersistenceUnit.FEModel_DDL("c:\\test.sql", "c:\\fe.xml")

ISCPersistenceUnitCollection

The ISCPersistenceUnitCollection contains all outer level persistence units loaded in the
application. It contains one entry for each active data model.

The following table contains the methods for the ISCPersistenceUnitCollection interface:

Method Description

IUnknown _NewEnum() Constructs an instance of unit enumerator object.

ISCPersistenceUnit * Add(VARIANT Locator, VARIANT Adds a new persistence unit to the unit collection.
Disposition [optional])

VARIANT_BOOL Clear() Purges all units from the collection.

long Count() Number of persistence units in the collection.

ISCPersistenceUnit * Create(ISCPropertyBag * Creates a new unit, and registers the unit with the

PropertyBag, VARIANT Objectld [optional]) collection.

ISCPersistenceUnit * ltem(VARIANT nindex) Passes back an /lUnknown pointer for a PersistenceUnit
component.

VARIANT_BOOL Remove(VARIANT Selector, VARIANT Removes a persistence unit from the collection.
Save [optional])

Note: More information about property descriptions is located in the Property Bag for
Persistence Units and Persistence Unit Collections (see page 167) section.

Appendix A: API Interfaces Reference 139

APl Interfaces

ISCPersistenceUnitCollection::Add Arguments

Here is the signature for the Add function:

ISCPersistenceUnit * Add(VARIANT Locator, VARIANT Disposition)

The following table contains the valid arguments for the Add function:

Parameter Valid Type/Value

Description

Locator VT_BSTR — Persistence unit location

Identifies a location for the
persistence unit data source as a
string with a file or mart item
location, along with the attributes
required for successful access to
storage.

Disposition [optional] VT_BSTR — List of keywords
parameters

Arranges access attributes, such as
read only.

Note: More information about the Locator and Disposition parameters is located in the

Locator Property section.

ISCPersistenceUnitCollection::Create Arguments

Here is the signature for the Create function:

ISCPersistenceUnit * Create(ISCPropertyBag * Property Bag, VARIANT Objectld)

The following table contains the valid arguments for the Create function:

Parameter Valid Type/Value

Description

Property Bag ISCPropertyBag * — Pointer to a
Property Bag object

Supplies required and optional
properties to the creation process,
such as type of the model.

Objectld [optional] Empty Generates an ID for the new
persistence unit.
Objectld [optional] VT_BSTR — Object ID for the new Provides an identifier for the new

persistence unit

persistence unit.

Note: More information about property names and format is located in the Property
Bag for Persistence Units and Persistence Unit Collections (see page 167) section.

140 API Reference Guide

API Interfaces

ISCPersistenceUnitCollection::ltem Arguments

Here is the signature for the /tem function:

ISCPersistenceUnit * [tem(VARIANT nindex)

The following table contains the valid arguments for the /tem function:

Parameter Valid Type/Value Description

nindex VT_UNKNOWN - Pointer to Creates a clone for the Persistence
ISCPersistenceUnit Unit object.

nindex VT_l4 —Index of a persistence unit in Ordered position in the collection.
the persistence unit collection The index is zero-based.

nindex VT_BSTR - ID of a persistence unit Application-wide unique persistence

unit identifier.

ISCPersistenceUnitCollection::Remove Arguments

Here is the signature for the Remove function:

VARIANT_BOOL Remove(VARIANT Selector, VARIANT Save)

The following table contains the valid arguments for the Remove function:

Parameter Valid Type/Value Description

Selector VT_UNKNOWN - Pointer to Identifies the persistence unit.
ISCPersistenceUnit interface

Selector VT_BSTR — ID of a persistence unit Application-wide unique persistence
unit identifier.

Selector VT_l4 — Index of a persistence unit in Ordered position in the collection.
the persistence unit collection The index is zero-based.
Save [optional] VT_BOOL If set to TRUE, it saves the

persistence unit prior to removing it
from the collection. By default, all
unsaved data is saved unless the
Save parameter has a FALSE value,
or the unit has a temporary status
with an unspecified location
property.

Appendix A: APl Interfaces Reference 141

APl Interfaces

Note: Models should be closed prior to exiting the application. Add the following line in
your code to provide a call to explicitly close the model prior to exiting your application:

SaveNewPersistenceUnit(ThePersistenceUnit, DefaultFileName)
TheApplication.PersistenceUnits.Remove(ThePersistenceUnit, False)

ISCPropertyBag
The ISCPropertyBag interface is used to set and access the properties of
ISCApplicationEnvironment, ISCPersistenceUnit, and ISCModelSet. The ISCPropertyBag is
also used to set the properties of a new persistence unit.
The following table contains the methods for the ISCPropertyBag interface:
Method Description
VARIANT_BOOL Add(BSTR Name, VARIANT Value) Adds a new property to the bag. Does not check for
duplicate names. Returns TRUE if the property was
added to the bag, otherwise, it is FALSE.
void ClearAll() Removes all properties from the bag.
long Count() Returns the number of properties.
BSTR Name(long Propertyldx) Retrieves the indicated property name in the bag.
VARIANT Value(VARIANT Property) Retrieves the indicated property in the bag.
void Value(VARIANT Property, VARIANT Val) Sets the indicated property in the bag.

ISCPropertyBag::Add Arguments

Here is the signature for the Add function:

The following table contains the valid arguments for the Add function:

Parameter Valid Type/Value Description
Name BSTR Name of a new property.
Value Dependent on the property Value for a new property.

142 API| Reference Guide

API Interfaces

ISCPropertyBag::Name Arguments

Here is the signature for the Name function:

The following table contains the valid arguments for the Name function:

Parameter Valid Type/Value Description

Propertyldx Long A zero-based index for the
requested name.

ISCPropertyBag::Value Arguments (Get Function)

Here is the signature for the Value (Get) function:

| Ed Ed Ed Ed Fd d Ed Ed E B R R R R)

The following table contains the valid arguments for the Value (Get) function:

Parameter Valid Type/Value Description
Property VT_BSTR — Name of the property Identifies retrieved property.
Property VT_l4 — Index of the property Zero-based property index in the

Property Bag.

ISCPropertyBag::Value Arguments (Set Function)

Here is the signature for the Value (Set) function:

The following table contains the valid arguments for the Value (Set) function:

Parameter Valid Type/Value Description
Property VT_BSTR — Name of the property Identifies the property to update.
Val Dependent on the property Value for the given property.

Appendix A: APl Interfaces Reference 143

APl Interfaces

ISCPropertyValue

The ISCPropertyValue interface is a single value of a given property.

The following table contains the methods for the ISCPropertyValue interface:

Method

Description

SC_ValueTypes * GetSupportedValueldTypes()

Groups a list of supported value types for the current
value identifier and returns it as a SAFEARRAY.

The GetValue method must be able to convert the
current value into any value type whose code appears
in the returned list. If the list is empty, the value is
available only in its native (such as default) format.
Reference properties must return an empty list.

SC_ValueTypes * GetSupportedValueTypes()

Groups a list of supported value types and returns it as
a SAFEARRAY.

The GetValueld method must be able to convert the
current value into any value type whose code appears
in the returned list. If the list is empty, then the current
identifier is available only in its native (such as default)
format.

SC_CLSID PropertyClassld()

Returns the class identifier of the current property.

BSTR PropertyClassName()

Returns the class name of the current property.

VARIANT Value(VARIANT ValueType [optional])

Converts the current value to the passed value type.

VARIANT Valueld(VARIANT ValueType [optional])

Uniquely identifies the value in a non-scalar property.

SC_ValueTypes ValueldType()

Passes back the default type of the Valueld that
identifies the value within the non-scalar property.

SC_ValueTypes ValueType()

Passes back the default type of the property value.

Note: More information about value data types is located in the SC_ValueTypes (see

page 156) section.

144 APl Reference Guide

API Interfaces

ISCPropertyValue::Valueld Arguments

Here is the signature for the Valueld function:

The following table contains the valid arguments for the Valueld function:

Parameter

Valid Type/Value

Description

ValueType [optional]

VT_14 = SCVT_I2 or SCVT_l4

Returns VT_EMPTY if property is
scalar. If it is non-scalar, the value of
the zero-based index of the property
is returned.

ValueType [optional]

VT_I4 - SCVT_BSTR

Returns VT_EMPTY if the property is
scalar, returns the name of the
non-scalar property member if it is
available, or else it returns the index
of the member.

ValueType [optional]

VT_I4 — SCVT_DEFAULT

Returns VT_EMPTY if the property is
scalar. If it is non-scalar, the value of
the zero-based index of the property
is returned.

ValueType [optional]

Empty

Defaults to SCVT_Default.

ISCPropertyValue::Value Arguments

Here is the signature for the Value function:

The following table contains the valid arguments for the Value function:

Parameter

Valid Type/Value

Description

ValueType [optional]

VT_l4 — SCVT_DEFAULT

Identifies a request for the property
value in native format.

ValueType [optional]

VT_I4 - SCVT_BSTR

Identifies a request for the string
conversion for the property value.

ValueType [optional]

VT_l4 —Type of property

Identifies a target for type
conversion.

ValueType [optional]

Empty

Defaults to SCVT_DEFAULT.

Appendix A: API Interfaces Reference 145

APl Interfaces

ISCPropertyValueCollection

The ISCPropertyValueCollection interface is a collection of values for a non-scalar
property.

The following table contains the methods for the ISCPropertyValueCollection interface:

Method Description

IUnknown _NewEnum() Constructs an instance of the collection enumerator
object.

long Count() Number of values in the collection.

ISCPropertyValue * ltem(VARIANT Valueld) Returns a single value from the property value
collection.

VARIANT_BOOL Facet (VARIANT Facet) Retrieves a facet. It fails if the facet is not set.

Facet is either a facet ID or facet name.

void Facet (VARIANT Facet, VARIANT_BOOL Val) Sets a facet with the given value.
Facet is either a facet ID or facet name.

VARIANT_BOOL RemoveFacet (VARIANT Facet) Removes a facet to non-set state.

Facet is either a facet ID or facet name.

ISCPropertyValueCollection::ltem Arguments

Here is the signature for the /tem function:

The following table contains the valid arguments for the Item function:

Parameter Valid Type/Value Description

Valueld VT_l4 — Index of the element in Identifies an element with a
multi-valued property zero-based index.

Valueld VT_BSTR — Name of an elementina Identifies an element by name.

multi-valued property

146 API| Reference Guide

API Interfaces

ISCPropertyValueCollection::Facet Arguments (Get Function)

Here is the signature for the Facet (Get) function:

The following table contains the valid arguments for the Facet (Get) function:

Parameter Valid Type/Value Description

Facet VT_l4 —Facet ID Retrieves a facet value. It fails if the
facet is not set.

Facet VT_BSTR — Facet name Retrieves a facet value. It fails if the
facet is not set.

Note: More information is located in the Property Bag for Application Environment (see
page 157) section.

ISCPropertyValueCollection::Facet Arguments (Set Function)

Here is the signature for the Facet (Set) function:

The following table contains the valid arguments for the Facet (Set) function:

Parameter Valid Type/Value Description

Facet VT_l4 —Facet ID Sets a facet with the given value. It
fails if the facet is not set.

Facet VT_BSTR — Facet name Sets a facet with the given value. It
fails if the facet is not set.

Note: More information is located in the Property Bag for Application Environment (see
page 157) section.

Appendix A: APl Interfaces Reference 147

APl Interfaces

ISCPropertyValueCollection::RemoveFacet Arguments

Here is the signature for the RemoveFacet function:

The following table contains the valid arguments for the RemoveFacet function:

Parameter Valid Type/Value Description

Facet VT_l4 —Facet ID Removes a facet to non-set state.

Facet VT_BSTR — Facet name Removes a facet to non-set state.
Note: More information is located in the Property Bag for Application Environment (see
page 157) section.

ISCSession
The ISCSession interface is an active connection between the API client and a model.
The following table contains the methods for the ISCSession interface:

Method Description

VARIANT BeginTransaction()

Opens a transaction on the session. The method passes
back a transaction identifier. Implementations use the
identifier to scope Commit and Rollback operations. If
the application does not support nested transactions, it
passes back VT_EMPTY.

Transaction nesting is implicit. If an API client invokes
BeginTransaction and a transaction is already open, the
new transaction is nested inside the existing one.

VARIANT BeginNamedTransaction(BSTR Name,
VARIANT PropertyBag [optional])

Opens a transaction on the session. Similar to
BeginTransaction with an option to provide a
transaction name and additional properties.

VARIANT_BOOL ChangeAccess(SC_SessionFlags Flags)

Changes the model access to the specified level.

VARIANT_BOOL Close()

Disconnects self from its associated persistence unit or
model set.

VARIANT_BOOL CommitTransaction(VARIANT
Transactionld)

Commits the specified transaction and all nested
transactions contained within it.

SC_SessionFlags Flags()

Returns a set of flags associated with the session.

148 API Reference Guide

API Interfaces

Method

Description

VARIANT_BOOL IsValid()

Returns TRUE if self is valid.

VARIANT_BOOL IsTransactionEmpty(VARIANT All
[optional])

TRUE if there was no data modification applied from
the beginning of the outer transaction or for the
duration of the current transaction.

Returns TRUE with no open transaction present.

SC_SessionLevel Level()

Returns the level at which the persistence unit or
model is bound.

This value is valid only if the session is open.

VARIANT_BOOL IsOpen()

TRUE only if the session is open.

ISCModelObjectCollection * ModelObjects()

Creates a ModelObject collection for the session.

The returned collection contains every object
associated with the persistence unit or model set.

SC_MODELTYPEID ModelSetld()

Passes back an identifier for the model set associated
with the session.

BSTR Name()

Name of the associated persistence unit or model set.

Contains a valid name only when self is in the Opened
state.

VARIANT_BOOL Open(lUnknown * Target, VARIANT
Level [optional], VARIANT Flags [optional])

Binds to the persistence unit, model set, or intrinsic
metamodel identified by the Target parameter.

ISCPersistenceUnit * PersistenceUnit()

Persistence unit associated with the session. Contains a
valid pointer only when it is in the Opened state.

long TransactionDepth()

Returns the current depth level of the nested
transaction. Returns zero if there are no active
transactions present.

Note: More property information about the BeginNamedTransaction method is located
in the Property Bag for Session (see page 172) section. More information about

SC_SessionFlags and SC_SessionLevel is located in the Enumerations (see page 153)

section.

Appendix A: API Interfaces Reference 149

APl Interfaces

ISCSession::BeginNamedTransaction Arguments

Here is the signature for the BeginNamedTransaction function:

The following table contains the valid arguments for the BeginNamedTransaction

function:
Parameter Valid Type/Value Description
Name BSTR Provides a name for a new
transaction.
PropertyBag Empty No optional parameters.
PropertyBag VT_UNKNOWN - Pointer to a Collection of the transaction

Property Bag object properties.

Note: More information about the transaction properties is located in the Property Bag
for Session (see page 172) section.

ISCSession::CommitTransaction Arguments

Here is the signature for the CommitTransaction function:

The following table contains the valid arguments for the CommitTransaction function:

Parameter Valid Type/Value Description

Transactionld The ID of the session Provides a transaction identifier.

150 APl Reference Guide

API Interfaces

ISCSession::IsTransactionEmpty Arguments

Here is the signature for the IsTransactionEmpty function:

The following table contains the valid arguments for the IsTransactionEmpty function:

Parameter Valid Type/Value Description

All Empty Identifies a request on the status of
the current transaction.

All VT_BOOL, FALSE Identifies a request on the status of
the current transaction.

All VT_BOOL, TRUE Identifies a request on the status of
all transactions starting with the
beginning of the outer transaction.

ISCSession::Open Arguments

Here is the signature for the Open function:

The following table contains the valid arguments for the Open function:

Parameter Valid Type/Value Description

Target ISCPersistenceUnit * — pointer to a Provides a persistence unit to
persistence unit attach.

Target ISCModelSet * — pointer to a model Provides a model set to attach.
set

Target ISCPropertyBag * — pointer to a Provides a property bag with the
property bag description of an intrinsic

metamodel to attach.

Level [optional] Empty Defaults to SCD_SL_MO.
Level [optional] SCD_SL_MO Data-level access.

Level [optional] SCD_SL_M1 Metamodel access.

Flags [optional] Empty Defaults to SCD_SF_NONE.

Appendix A: APl Interfaces Reference 151

APl Interfaces

Parameter Valid Type/Value Description

Flags [optional] SCD_SF_NONE Other sessions can have access to
the attached persistence unit.

Flags [optional] SCD_SF_EXCLUSIVE Other sessions cannot have access
to the attached persistence unit.

ISCSession::RollbackTransaction Arguments

Here is the signature for the RollbackTransaction function:

The following table contains the valid arguments for the RollbackTransaction function:

Parameter Valid Type/Value Description

Transactionld The ID of the session Provides a transaction identifier.

ISCSessionCollection

The Session Collection contains the active connections between the API client and the
application.

The following table contains the methods for the ISCSessionCollection interface:

Method Description
IlUnknown _NewEnum() Constructs an instance of a session enumerator object.
ISCSession * Add() Construct a new, closed Session object, and adds it to

the collection.

VARIANT_BOOL Clear() Removes all Session objects from the collection

long Count() The number of sessions in the collection.

ISCSession * Item(long nindex) Passes back a session identified by its ordered position.
VARIANT_BOOL Remove(VARIANT Sessionld) Removes a Session object from the collection. If the

session is opened, it is closed before it is removed. All
committed changes are saved in the persistence unit.

152 API Reference Guide

Enumerations

ISCSessionCollection::

Item Arguments

Here is the signature for the /tem function:

The following table contains the valid arguments for the /tem function:

Parameter Valid Type/Value Description
Index long-Index Provides a zero-based index of a
session.

ISCSessionCollection::

Remove Arguments

Here is the signature for the Remove function:

PN N2 202 P02 22 2 2 2 2 2 2 2N 2N V2 212N 21 2 21 2L 2L 2L 212N 21 21 212 22

The following table contains the valid arguments for the Remove function:

Parameter Valid Type/Value Description

Sessionld VT_UNKNOWN - Pointer to the Identifies a session with the Session
ISCSession interface object.

Sessionld VT_l4 —Index in the session Provides a zero-based index of a
collection session.

Enumerations

This section contains information regarding the various enumerations for the API. The
enumerations define valid values for various properties.

SC_ModelDirectoryFlags

The following table contains the properties and enumerations for
SC_ModelDirectoryFlags:

Property Enumeration Description
SCD_MDF_DIRECTORY 0 Directory
SCD_MDF_ROOT 1 Root directory

Appendix A: APl Interfaces Reference 153

Enumerations

SC_ModelDirectoryType

The following table contains the properties and enumerations for
SC_ModelDirectoryType:

Property Enumeration Description
SCD_MDT_NONE 0 Type is not available
SCD_MDT_FILE 1 File system
SCD_MDT_MART 2 Mart

SC_ModelObjectFlags

The following table contains the properties and enumerations for SC_ModelObjectFlags:

Property Flag Bit Enumeration Description

SCD_MOF_DONT_CARE 0 No flags are set

SCD_MOF_PERSISTENCE_UNIT 0 1 Object is a persistence unit (such as
model)

SCD_MOF_USER_DEFINED 1 2 Object is user-defined (such as
user-defined properties)

SCD_MOF_ROOT 2 4 Object is the root object (such as model)

SCD_MOF_TOOL 3 8 Object is maintained by the tool

SCD_MOF_DEFAULT 4 16 Object is created by the tool and not
removable

SCD_MOF_TRANSACTION 5 32 Object is new or updated in a transaction

and the transaction was not committed

SC_ModelPropertyFlags

The following table contains the properties and enumerations for
SC_ModelPropertyFlags:

Property Flag Bit Enumeration Description
SCD_MPF_DONT_CARE 0 No flags are set
SCD_MPF_NULL 0 1 Property has NULL value or no value

154 API| Reference Guide

Enumerations

Property Flag Bit Enumeration Description

SCD_MPF_USER_DEFINED 1 2 Property is user-defined

SCD_MPF_SCALAR 2 4 Property is scalar

SCD_MPF_TOOL 3 8 Property is maintained by the tool

SCD_MPF_READ_ONLY 4 16 Property is read-only (not used in erwin
DM)

SCD_MPF_DERIVED 5 32 Property is inherited, calculated, or
derived

SCD_MPF_OPTIONAL 6 64 Property is optional and can be removed

SC_SessionFlags

The following table contains the properties and enumerations for SC_SessionFlags:

Property

Enumeration Description

SCD_SF_NONE

0 Session has non-exclusive access to its connected
persistence unit. Other sessions can connect to the
same persistence unit.

SCD_SF_EXCLUSIVE

1 Session has exclusive access to its connected
persistence unit. No other sessions are allowed to
access the persistence unit.

SC_SessionLevel

The following table contains the properties and enumerations for SC_SessionLevel:

Property Enumeration Description
SCD_SL_NONE -1 Not used
SCD_SL_MO 0 Data level access
SCD_SL_ M1 1 Metamodel access

Appendix A: API Interfaces Reference 155

Enumerations

SC_ValueTypes

The following table contains the properties and enumerations for SC_ValueTypes:

Property Enumeration Description

SCVT_NULL 0 Missing value

SCVT_I2 1 Signed 16-bit integer

SCVT_l4 2 Signed 32-bit integer

SCVT_ull 3 Unsigned 8-bit integer. Do not use this type
to hold character data.

SCVT_R4 4 4 byte floating point real

SCVT_R8 5 8 byte floating point real

SCVT_BOOLEAN 6 Boolean

SCVT_CURRENCY 7 64-bit currency value

SCVT_IUNKNOWN 8 IUnknown interface pointer

SCVT_IDISPATCH 9 IDispatch interface pointer

SCVT_DATE 10 Date value in VARIANT_DATE format

SCVT_BSTR 11 String

SCVT_UI2 12 Unsigned 16-bit integer

SCVT_Ul4 13 Unsigned 32-bit integer

SCVT_GUID 14 GUID

SCVT_OBIID 15 A string (VT_BSTR) contains an object
identifier with offset

SCVT_BLOB 16 SAFEARRAY of unsigned BYTEs

SCVT_DEFAULT 17 Default value type

SCVT_I1 18 Signed 1 byte integer. Do not use this type
to hold character data.

SCVT_INT 19 Machine-dependent signed integer

SCVT_UINT 20 Machine-dependent unsigned integer

SCVT_RECT 21 Rectangle-array of four integers (VT_ARRAY
& VT_12)

SCVT_POINT 22 Point-array of two integers (VT_ARRAY &
VT_12)

SCVT_I8 23 Signed 64-bit integer

156 API Reference Guide

Property Bag Reference

Property Enumeration Description

SCVT_UI8 24 Unsigned 64-bit integer

SCVT_SIZE 25 Size array of two integers (VT_ARRAY &
VT_l4)

Property Bag Reference

This section contains information about the content of the Property Bag container. A
property bag is a placeholder for an array of properties. The content of the bag is
dictated by a source interface.

Property Bag for Application Environment

This property bag provides access for Application Features sets. The parameters of the
PropertyBag call determine the context of the bag. The contents of the bag can have
one of two available forms, either native format or a string based on the optional
parameter of the PropertyBag property of the ISCApplicationEnvironment interface.

Feature categories in the Category parameter of the PropertyBag property are
hierarchical and use a dot (.) to define feature subsets. For example, the Application
category populates a property bag with a complete set of erwin DM features, while
Application.API provides a subset related to the API.

If the Category parameter is not set, then the Property Bag property returns the
complete set of all the features from all the available categories.

The following tables summarize the available feature categories and list the Property
Bag properties for each category.

ISCApplicationEnvironment::PropertyBag

The PropertyBag function from the ISCApplicationEnvironment interface populates a
property bag with one or more property values as indicated by Category and Name.

Here is the signature for the ISCApplicationEnvironment PropertyBag function:

Appendix A: API Interfaces Reference 157

Property Bag Reference

The following table contains the valid arguments for the ISCApplicationEnvironment
PropertyBag function:

Parameter Valid Type/Value Description

Category [optional] Empty Complete set of features from all
categories are returned.

Category [optional] VT_BSTR — Name of category Features from the given category
are returned.

Name [optional] Empty All properties from the selected
category are returned.

Name [optional] VT_BSTR — Name of property The property with the given name
and category is returned.

AsString [optional] Empty All values in the property bag are
presented in native type.

AsString [optional] VT_BOOL — TRUE or FALSE If set to TRUE, all values in the
property bag are presented as
strings.

Category Parameter Contains an Empty String

The following table describes the Category parameter that contains an empty string:

Property Name Type Description

Categories SAFEARRAY(BSTR) Returns an array of all the available categories.

Application Category

The following table describes the Application category, which describes the features
associated with the erwin DM tool:

Property Name Type Description

Title BSTR Provides the erwin DM title.

Version BSTR Provides the erwin DM version.

Hosting_Application Long m 0-—Returns 0 if the APl is controlled by third-party

application, in standalone mode.

m 1-Returns 1if the erwin DM user interface is active
and the APl is in add-in mode.

Metadata_Version Long Metadata value for the current version of erwin DM.

158 API Reference Guide

Property Bag Reference

Property Name Type Description
EMX_Metadata_Class SC_MODELTYPEID Metadata class identifier for EMX model sets.
EM2_Metadata_Class SC_MODELTYPEID Metadata class identifier for EM2 model sets.

Application.API Category

The following table describes the Application.API category, which describes the features
associated with the API:

Property Name Type Description

AP|_Version BSTR Provides the version of the API interfaces.
AP|_Major_Version_Number Long The API major version number.
API_Minor_Version_Number Long The API minor version number.

Application.APl.Features Category

The following table describes the Application.API.Features category, which summarizes
the level of support the API provides in its main set of operations:

Property Name Type Description

Undo Long Describes the ability to undo operations.
m 0-Undo not supported.

m Non-zero — Undo is supported.

Redo Long Describes the ability to redo undone operations.
m 0-—Redo not supported.

m Non-zero — Redo is supported.

Change_Logging Long Describes the ability to report all changes since the last
synchronization with the client.

m 0-Change logging not supported.

m Non-zero — Change logging is supported.

Appendix A: API Interfaces Reference 159

Property Bag Reference

Property Name Type Description

Ownership_Support Long Queries the support level of the application for object
ownership. The following describes the support levels:

m 0-—The application does not support object
ownership.
m 1-The application supports ownership and the
ownership meta-relation contains no cycles.
m 2 -—The application supports ownership and the
ownership meta-relation contains cycles.
Transactions Long Describes the level of support for transaction control. The

following describes the support levels:

0 — No support for transactions.
1 —Begin and End only. No nesting.
2 — Begin, End, and Rollback. No nesting.

3 —Begin, End, and Rollback, with arbitrary transaction
nesting.

Application.APl.MessagelLog Category

The following table describes the Application.APl.Messagelog category, which provides
access to additional messages registered during APl operations:

Property Name Type Description
Is_Empty Boolean Returns TRUE if the message log is not empty. The log is
reset before the beginning of every API operation.
Log SAFEARRAY(VARI Returns the content of the log.
ANT)

The Property Log from the Messagelog category is organized as a one-dimensional
SAFEARRAY with VARIANT type as elements. The array has the following structure:

160 API Reference Guide

Property Bag Reference

The following table describes the elements of the array:

Message Log Element Type Description

Total Number Long Total number of messages in the array. The value can
be zero if there were no messages when the Log
property was requested.

Error Code BSTR A message string identifier.

Severity Code Long The following are the SC_MessagelLogSeveritylLevels
severity codes:

m SCD_ESL_NONE — No severity code was assigned.
m SCD_ESL_INFORMATION — Information message.
m SCD_ESL_WARNING — Warning message.

m ESD _ESL _ERROR — Error message.

Message BSTR Message text.

Model Set Id SC_MODELSETID An identifier of a model set associated with a
message. An element has the VARIANT type
VT_EMPTY if no data was provided.

Object Type SC_CLSID Class identifier for a model object associated with a
message. An element has the VARIANT type
VT_EMPTY if no data was provided.

Object Id SC_OBIJID Identifier for a model object associated with a
message. The identifier is unique in the scope of the
model set. An element has the VARIANT type
VT_EMPTY if no data was provided.

Property Type SC_CLSID Class identifier for a property associated with a
message. An element has the VARIANT type
VT_EMPTY if no data was provided.

Reserved Always marked as VT_EMPTY.

Note: For information about object class identifiers and property class identifiers, see
the HTML document erwin Metamodel Reference, in the Metamodel Reference
Bookshelf located in the erwin® Data Modeler installation folder. More information
about using the Model Set Identifier to locate a model set is located in the Accessing a
Model (see page 33) and Accessing a Model Set (see page 44) sections. More
information about using the Class Identifier to learn more about object types and
property types is located in the Accessing Metamodel Information (see page 83) section.
More information about using the Object Identifier to access the associated model
object is located in the Accessing Objects in a Model (see page 47) section.

Appendix A: API Interfaces Reference 161

Property Bag Reference

Application.Modeling Category

The Application.Modeling category describes the features associated with the erwin DM
modeling engine:

Property Name Type Description
Model_Property_Value F SAFEARRAY(Long) The data is organized as a one-dimensional SAFEARRAY
acet_lds with the Long type as elements.

The elements represent property value facet IDs
available in model data.

The elements are ordered to match the order in the
Model_Property_Value_Facet_Names.

Model_Property_Value_F SAFEARRAY(BSTR) The data is organized as a one-dimensional SAFEARRAY
acet_Names with the BSTR type as elements.

The elements represent property value facet names
available in model data.

The elements are ordered to match the order in the
Model_Property_Value_Facet_Ids.

The following table lists available property facets:

Property Name Type Description

Hardened 5 Indicates that a value will not change due to inheritance.
For example, a name for a foreign key attribute in a child
entity.

AutoCalculated 3 Indicates that a value is auto-calculated by the tool. For

example, cardinality is auto-calculated by default. In this
case, the auto-calculated facet is set to true.

162 API Reference Guide

Property Bag Reference

Application.Modeling.Physical Category

The following table describes the Application.Modeling.Physical category, which
describes the features associated with physical modeling in erwin DM:

Property Name

Type Description

DBMS_Brand_And_Version_List SAFEARRAY(Long) The data is organized as a

one-dimensional SAFEARRAY with the
Long type as elements.

The elements are grouped into
subsets of three. The first member of
the subset contains a DBMS brand
identifier, the second member is the
major version value, and the last
member is the minor version value.

Application.Persistence Category

The Application.Persistence category describes the features associated with persistence
support in erwin DM. There are no properties in this category.

Application.Persistence.FileSystem Category

The following table describes the Application.Persistence.FileSystem category, which
describes the features associated with the file system:

Property Name Type Description
Current_Directory BSTR Absolute path for the current local
directory.

Application.Persistence.Mart

The following table describes the Application.Persistence.Mart category, which
describes the features associated with persistence support in erwin® Data Modeler
Workgroup Edition:

Property Name

Type Description

Mart_Connection_Types

SAFEARRAY(BSTR) Enumerate mart supported
database connection types.

Appendix A: API Interfaces Reference 163

Property Bag Reference

Property Bag for Model Directory and Model Directory Unit

This Property Bag provides access to the properties of the Model Directory and the
Model Directory Unit objects. The PropertyBag property for both the ISCModelDirectory
interface and the ISCModelDirectoryUnit interface populates the bag with the set of
current properties. The same property of these interfaces allows modification of
directory (if it is not read-only) or directory unit attributes. The contents of the bag can
have one of two available forms, either native format or as a string based on the
optional parameter of the PropertyBag property of ISCModelDirectory and
ISCModelDirectoryUnit. The client can populate the bag in either of these two forms.
Different forms can be mixed in the same instance of the bag.

Not all properties that exist in the directory or directory unit have to be present in the
bag when it is submitted. All property data as well as property names are validated by
the API, and all are either accepted or rejected. The rejection forces a method call to
fail. If the bag includes properties that are read-only at the moment, for example, the
Locator property, then such properties are ignored and do not affect validation of the
bag data.

The following table lists the Property Bag properties and data types for the Model
Directory:

Property Name Type Read-only Description
Directory_Name BSTR No Returns a directory name without the path
information.

Applying a new value renames a directory.

For the mart root directory, this is a repository
name. The property does not allow the
modification of the repository name.

Locator BSTR Yes Location of a directory including absolute path and

parameters. For a mart, parameters do not include
password information.

Directory_Path BSTR Yes Directory absolute path.

Created_By BSTR Yes Identification for a user that has created a

directory. For erwin® Data Modeler Workgroup
Edition only, a mart user ID is used.

Updated_By BSTR Yes Identification for a user that has updated a

directory. For erwin® Data Modeler Workgroup
Edition only, a mart user ID is used.

164 API| Reference Guide

Property Bag Reference

Property Name Type Read-only Description
Created SAFEARRAY(Long) Yes Creation date of a directory. The time is an array of

numbers in the following order:

m Seconds after minute (0 - 59)

m Minutes after hour (0 - 59)

m Hours since midnight (0 - 23)

m Day of month (1-31)

m Month (0-11; January = 0)

m Year (current year)

m Day of week (0 - 6; Sunday = 0)

m Day of year (0 - 365; January 1 =0)
Updated SAFEARRAY(Long) Yes Update date of a directory. The time is an array of

numbers in the following order:

m Seconds after minute (0 - 59)

m Minutes after hour (0 - 59)

m Hours since midnight (0 - 23)

m Dayof month (1 -31)

m Month (0 - 11; January = 0)

m Year (current year)

m Day of week (0 - 6; Sunday = 0)

m Day of year (0 - 365; January 1 =0)
Description BSTR No A directory description. This is only for erwin®

Data Modeler Workgroup Edition.

The following table lists the Property Bag properties and datatypes for the Model

Directory Unit:

Property Name Type Read-only Description
Directory_Unit_Name BSTR No Returns a directory unit name without path
information.
Applying a new value renames a directory unit.
Locator BSTR Yes Location of a directory unit including absolute

path and parameters. For a mart, parameters do
not include password information.

Appendix A: API Interfaces Reference 165

Property Bag Reference

Property Name Type Read-only Description
Directory_Unit_Path BSTR Yes Directory unit absolute path.
Created_By BSTR Yes Identification for a user that has created a unit.
For erwin® Data Modeler Workgroup Edition only,
a mart user ID is used.
Updated_By BSTR Yes Identification for a user that has updated a unit.
For erwin® Data Modeler Workgroup Edition only,
a mart user ID is used.
Created SAFEARRAY(Long) Yes Creation date of a directory. The time is an array
of numbers in the following order:
m Seconds after minute (0 - 59)
m Minutes after hour (0 - 59)
m Hours since midnight (0 - 23)
m Day of month (1-31)
m Month (0-11; January = 0)
m Year (current year)
m Day of week (0 - 6; Sunday = 0)
m Day of year (0 - 365; January 1 =0)
Updated SAFEARRAY(Long) Yes Update date of a directory. The time is an array of
numbers in the following order:
m Seconds after minute (0 - 59)
m Minutes after hour (0 - 59)
m Hours since midnight (0 - 23)
m Dayof month (1 -31)
m Month (0 - 11; January = 0)
m Year (current year)
m Day of week (0 - 6; Sunday = 0)
m Day of year (0 - 365; January 1 =0)
Description BSTR Yes A directory description. This is only for erwin®
Data Modeler Workgroup Edition.
Model_Type Long Yes Retrieves the type of a unit model. A model type

can be logical, logical/physical, or physical.

166 API Reference Guide

Property Bag Reference

Property Name

Type Read-only Description

Object_Count

Long Yes Reports total number of objects in the unit. This is
only for erwin® Data Modeler Workgroup Edition.

Entity_Count Long Yes Reports total number of entity objects in the unit.
This is only for erwin® Data Modeler Workgroup
Edition.

Is_Template Boolean Yes Returns TRUE if a unit model is a template.

Property Bag for Persistence Units and Persistence Unit Collections

This Property Bag provides access to the properties of a persistence unit. An empty
Property Bag can be obtained through a call to the CoCreatelnstance of the COM API.
The client populates a bag and then submits it as a parameter for the Create method of
the ISCPersistenceUnitCollection interface. Alternatively, the present state of
persistence unit properties can be retrieved through the PropertyBag property of
ISCPersistenceUnit. The retrieved value can be reviewed, modified, and submitted back
through the PropertyBag property of the same interface. The contents of the bag can
have one of two available forms: native format or as a string based on the optional
parameter of the PropertyBag property of the ISCPersistenceUnit. The client can
populate the bag in either of these two forms. Different forms can be mixed in the same
instance of the bag.

Not all properties that exist in the unit have to be present in the bag when it is
submitted. All property data as well as property names are validated by the APl and
either all are accepted or all are rejected. The rejection forces a method call to fail. If the
bag includes properties that are read-only at the moment, for instance, the model type
for a erwin DM model when the model was created previously, then such properties are
ignored and will not affect validation of the bag data.

Appendix A: API Interfaces Reference 167

Property Bag Reference

ISCPersistenceUnit::PropertyBag Arguments (Get Function)

Here is the signature for the PropertyBag (Get) function:

The following table contains the valid arguments for the PropertyBag (Get) function:

Parameter Valid Type/Value

Description

List [optional] VT_BSTR — Semicolon separated list
of properties

Provides a list of the unit properties.
If the list is provided, only listed
properties are placed in the
returned property bag.

List [optional] Empty

Requests a complete set of
properties.

AsString [optional] VT_BOOL — TRUE or FALSE

If set to TRUE, it requests that all
values in the bag be presented as
strings. The default is FALSE and all
values are in their native format.

AsString [optional] Empty

All values in the property bag are
presented in native format.

ISCPersistenceUnit::PropertyBag Arguments (Set Function)

Here is the signature for the PropertyBag (Set) function:

The following table contains the valid arguments for the PropertyBag (Set) function:

Parameter Valid Type/Value Description
List [optional] Not used
AsString [optional] Not used

propBag ISCPropertyBag *

A pointer on a property bag with the
unit properties to process

168 API Reference Guide

Property Bag Reference

Property Bag Contents for Persistence Unit and Persistence Unit Collection

The following table lists the Property Bag properties and datatypes recognized by erwin

DM:

Property Name

Type Read-only

Description

Locator

BSTR Yes

Returns the location of the persistence
unit, such as file name. Not available for
models without a persistence location,
such as new models that were never
saved.

Disposition

BSTR Yes

Returns the disposition of the
persistence unit, such as read-only.

Persistence_Unit_Id

SC_MODELTYPEID No

Retrieves and sets an identifier for the
persistence unit.

A new identifier can be assigned to the
existing persistence unit. In this case,
the old identifier will be placed in the
persistence unit's branch log.

Note: For more information, see the
description of the Branch Log property.

Branch_Log

SAFEARRAY After create
(SC_MODELTYPEID)

Retrieves and sets the branch log of the
persistence unit identifiers. A
persistence unit retains its log of
identifiers.

erwin DM uses the branch logs of the
persistence units for extended
identification match.

The APl uses only the most current
identifier for searching in the
Persistence Unit Collection.

Appendix A: API Interfaces Reference 169

Property Bag Reference

Property Name Type

Read-only

Description

Model_Type Long

After create

Retrieves and sets the type of the
persistence unit, such as logical,
logical/physical, and physical models.
Can be set when a persistence unit is
created; after that the property
becomes read-only.

Available values are:

m 1-Llogical, for logical models. This
is the default if no value is
provided.

m 2 — Physical, for physical models.

m 3 —Combined, for a logical/physical
model.

Target_Server Long
Target_Server_Version
Target_Server_Minor_Version

After create

Retrieves and sets the target database
properties for physical and
logical-physical models. Can be set
when a persistence unit is created;
after that the property becomes
read-only.

Note: For available values for the
Target_Server property, see the next
table.

Storage_Format Long

After create

Retrieves and sets the storage format,
which has a value of Normal for a
model and a value of Template for a
model template. Can be set when a
persistence unit is created; after that
the property becomes read-only.

Available values are:
m 4012 — Normal, for a regular

model. This is the default if no
value is provided.

m 4016 — Template, for a template
model.

Active_Model Boolean

No

TRUE if the persistence unit represents
the current model and is active in the
erwin DM user interface. Not available
when using the APl in standalone
mode.

170 API Reference Guide

Property Bag Reference

Property Name

Type Read-only Description

Hidden_Model

Boolean No TRUE if a model window with the
persistence unit data is not visible in
the erwin DM user interface. Not
available when using the APl in
standalone mode.

Active_Subject_Area_and_Stored SAFEARRAY(BSTR) No Reports names of active Subject Area

_Display

and Stored Display model objects. This
indicates the Subject Area and Stored
Display that erwin DM shows on the
screen. The returned value is a safe
array with two elements. The first
element is a name for the active
Subject Area and the second element is
for the Stored Display.

Providing a new set of Subject Area and
Stored Display names can change this
selection. The change has an effect
immediately if the model is active in the
erwin DM user interface or in the next
model opened by the erwin DM user
interface.

Optionally, to change a selection, you
need only a BSTR with a name for a
new Subject Area. From the Subject
Area you provide, the APl chooses the
first Stored Display as active.

The Target_Server property is a vector that consists of three members. The first
member of the vector contains a DBMS brand identifier, the second member is the
major version value, and the last member is the minor version value.

The following table lists DBMS brand identifiers for the Target_Server property. The
table also lists the brand names that are used when the identifier is presented as a
string:

DBMS Brand

DBMS Brand Name DBMS Brand ID

DB2 fori

DB2 1075859019

DB2 for LUW

DB2 UDB 1075858977

DB2 for z/OS

FoxPro 1075858978

Hive

Hive 1075859187

Informix

Informix 1075859006

Appendix A: API Interfaces Reference 171

Property Bag Reference

DBMS Brand DBMS Brand Name DBMS Brand ID
MySQL Ingres 1075859129
ODBC/Generic ODBC 1075859009
Oracle Oracle 1075858979
PostgreSQL PostgreSQL 1075918977
Progress Progress 1075859010
SAS SAS 1075859013
SQL Server SQL Server 1075859016
SQL Azure SQL Azure 1075859180
SAP ASE Sybase 1075859017
SAPIQ Sybase 1075859130
Teradata Teradata 1075859018

Property Bag for Session

This Property Bag provides additional information to the BeginNamedTransaction
function of the ISCSession interface and can be submitted as the second optional
argument of the function. The contents of the bag can have one of two available forms:
native format or as a string. The client can populate the bag in either of these two
forms. Different forms can be mixed in the same instance of the bag.

Not all properties have to be present in the bag when it is submitted. All property data
as well as property names are validated by the API, and all are either accepted or
rejected. The rejection forces a method call to fail.

The transaction properties are in effect at the initiation of an outer transaction and are
confined to the scope of the transaction.

172 API Reference Guide

Location and Disposition in Model Directories and Persistence Units

The following table lists the Property Bag properties and datatypes for the
BeginNamedTransaction:

Property Name Type Read-only Description

History_Tracking Boolean No TRUE — Indicates that all historical information
generated during the transaction will be marked as
the APl event. A TRUE value is assumed if the
property is not provided.

FALSE — Uses the standard erwin DM mechanism of
history tracking.

History_Description BSTR No When the History_Tracking property is TRUE, it
provides the content of the history event
Description field.

Location and Disposition in Model Directories and Persistence
Units

The API describes the location of Persistence Units and their disposition in persistence
storage facilities with the Locator and Disposition properties. This information is
required by some of the APl methods and is also accessible using Property Bags.
Examples of persistence storage for erwin DM models are file system and mart.

Appendix A: API Interfaces Reference 173

Location and Disposition in Model Directories and Persistence Units

Locator Property

The following table describes the syntax supported by the Locator property:

Syntax

Arguments

RERRRRERR R RER R R R R R R R R R R R R PR R R R R R RERRRERE. . AR prOVider. Thls IS a type Of perSIStence

storage. Use erwin to specify file system, and
use mart for a mart. If this is skipped, erwin
is the default.

pathinfo: This is the path to the storage
location, which is either a file path or the
mart path.

param: This is either a parameter name or a
keyword.

value: This is a text string.

There are no param keywords defined for the file system persistence storage.

A list of Locator param keywords for use with the mart type of provider for models
stored in a mart is described in the following table.

Note: There is a special arrangement for the erwin® Data Modeler Workgroup Edition
Locator. Part of the Locator string with params can be omitted if an application has
connections open with one or more mart repositories. In this case, the params part of
the Locator string can have only partial information or not be present at all, as long as it
is clear to which connection from the available list it refers.

Currently, erwin® Data Modeler Workgroup Edition allows only one open connection to
a mart repository at any given time. Therefore, it is possible, after establishing a
connection, to omit the params part of the Locator string completely and to provide the
model path information only.

The following table provides a list of Locator param keywords for use with the mart type
of provider for models stored in a mart:

Complete Name

Abbreviation Description

Server

SRV Location where the application server exists.

Trusted Connection

TRC This is an optional parameter. When set to YES--it instructs to
use the Windows authentication model for login validation.
When set to No or when the value is not mentioned--it instructs
to use username and password to log in, in which case the UID
and PSW keywords must be specified.

Version Number

VNO Version number of the model.

174 API| Reference Guide

Location and Disposition in Model Directories and Persistence Units

Complete Name

Abbreviation

Description

User uiD Login user name. Do not specify UID when using Windows
Authentication.
Password PSW User login password. Do not specify PSW if you use Windows
Authentication (Trusted Connection set to YES).
Port Number PRT Port number to which the application server listens.
Application Name ASR Name of the application server.
1S 1S This is an optional parameter. YES--connects to MartServer using
[IS. No or not mentioned about this property--instructs to use
PortNo to connect MartServer, in which case PortNo must be
specified.
The following table describes various scenarios in which you can use the Locator param
keyword along with the mart type of provider for models stored in a mart:
Scenario Description

erwin® Data Modeler Workgroup Edition

Your Libraries/ Models are stored in the Mart under the catalog
named “Mart”. Mart is the default name, you can change it. A
library can contain a library. If a library that is specified in path
does not exist in the Mart, the library is created at the time of
saving the model and the model is stored in that library.

If you have a model named MyModel located in MyLib, which is in
an SSL secured Mart, you can use the following:

mart://<CatlogName>/<Libraryname>/<
ModelMName>?VNO=<versionno>;TRC
=NO;SRV=<ServerLocation>;PRT=<portn
0>;ASR=<ApplicationServerName>;SSL=
<YES/NO>;UID= <user
id>;PSW=<password>

For example:

4 1 Q1 A 1 il Pl il il

i 2 e a2 e e e e e e e e e e e e e e e)

Local drive

If you have a model called mod.erwin located in the models
directory on the C drive, you can use the following:

BIE\ERERER\FRRRRERRE

Appendix A: APl Interfaces Reference 175

Location and Disposition in Model Directories and Persistence Units

Disposition Property

The Disposition parameter provides optional information for the API to access model
data specified by the Locator parameter.

The following table describes the syntax supported by the Disposition property:

Syntax Arguments

ERRRREREE R R R R . 2 param: This is either a parameter name or a keyword.

value: Yes/No/specified values for some params.

The following table lists Disposition param keywords for use with the erwin type of
provider, such as for models stored in the file system:

Complete Name Abbreviation Description

Read Only RDO Requests read-only access to a file. Available for the
Persistence Unit Collection Add method.

Full access to a persistence unit is possible if the parameter
was not specified.

Overwrite File OVF Overwrites an existing file upon Save. Available for the
Persistence Unit Save method. There is no overwrite if the
parameter is not specified.

Main Subject Area MSA Keep the main Subject Area
Value: Yes/No

Diagram DGM Keep the diagrams for the main Subject Area
Value: Yes/No

Theme THM Apply a default theme to each diagram
Value: Yes/No

176 API Reference Guide

Location and Disposition in Model Directories and Persistence Units

Complete Name

Abbreviation Description

Transforms

XFM Transform object view should be converted into a specified
type. The param values are:

1. R"XFM=RESOLVE” (default value
if the parameter was not
specified)

[It converts the model
transform objects into Target
object view]

2. ”"XFM=REVERSE” [It converts the
model transform objects into
Source object view)]

3. "XFM=CONVERT”[It converts
the Model transform objects
into current view in which the
model is having]

For example: The disposition parameter is as follows:
(“RDO=Yes;MSA=Yes;DGM=NO;THM=Yes;XFM="REVERSE")

The following table lists Disposition param keywords for use with the mart type of
provider for models opened from, or stored in a mart:

Complete Name Abbreviation Description

Read Only RDO Request a read only access to a model while opening it from
Mart.

Overwrite Session ovs Overwrite an existing session. If the parameter is not specified,

it uses the existing session; if not, it creates a session.

Overwrite Model

OovVM Overwrite an existing model in a mart. Available for the
Persistence Unit Save method. There is no overwrite if the
parameter is not specified.

Appendix A: API Interfaces Reference 177

Appendix B: erwin DM Metamodel

This appendix lists information regarding the erwin DM metamodel.

Note: For more information, see the HTML document erwin Metamodel Reference, in

the Metamodel Reference Bookshelf located in the erwin® Data Modeler installation
folder.

This section contains the following topics:

Metadata Element Renaming (see page 180)
Metadata Organization (see page 181)
XML Schema (see page 185)

Appendix B: erwin DM Metamodel 179

Metadata Element Renaming

Metadata Element Renaming

Metadata element renaming affects object types, property types, and API-specific
property types. In r7.3, much of the metadata in erwin DM was renamed. These name
changes fall into two categories:

m Consistent naming and better representation of the model data. For example, the
property type For was renamed to For_Character_Type.

m Replacement of space characters with underscores in all metadata element names.
Prior to erwin DM r7.3, both object type and property type names accessed using
the API contained spaces, but when saving to XML format, those same names used
underscores. To remove this inconsistency, all space characters within such names
have been replaced by underscores.

Overall, this change is transparent and will not affect your day-to-day work. Awareness
of this change, however, is important if you use the APl and the new ODBC interface,
and have some familiarity with the pre-r7.3 metadata names. Existing API applications
and scripts must be updated to account for any new metadata names before use with
erwin DM. To assist you with this updating process, the following CSV files are provided
with the erwin DM installation in the <Program Files>\erwin\Data Modeler r9\metadata
changes:

Renamed Metadata (SCAPI).csv

Provides a list of the full set of changed metadata names. It is a two column CSV file
that contains the old name, new name pairs.

Renamed Metadata (XML).csv
Provides the subset of metadata names that appear as changed in XML files.

Note: Not included in this file are those metadata names where the only change
was the replacement of space characters with underscores, since erwin DM's XML
format already uses underscores in object type names and property type names.

Renamed SCAPI Properties.csv

Provides a list of the APl-only property names that were renamed.

180 API Reference Guide

Metadata Organization

Metadata Organization

The metadata includes object and property classes, object aggregations, and property
associations.

Object classes

Define the type of objects that may occur within a model such as an entity class, an
attribute class, or a relationship class.

Property classes

Define the type of properties an object may have such as the Name property,
Comment property, or Parent_Domain_Ref property.

Object aggregations

Identify an ownership relationship between classes of objects, such as a model that
owns entities, or entities that own attributes, and so on.

Property associations
Define property usage by object classes. For example, the metadata includes

property associations for every object class that has the Name property.

The following diagram shows the organization of the metadata:

Metamodel Elements

erwin DM organizes data as a group of linked model sets. The model sets are arranged
in a tree-like hierarchy with a single model set at the top.

The top model set contains the bulk of the modeling data. The API uses the abbreviation
EMX to identify the top model set.

The EMX model set owns a secondary model set, abbreviated as EM2, which contains
user interface settings and user options for erwin DM services such as Forward
Engineering, Complete Compare, and so on.

Appendix B: erwin DM Metamodel 181

Metadata Organization

Metadata Tags

The API clients access the model data by constructing a session and connecting it to a
model set using the Session component.

A model set contains several levels of data. It contains the data the application
manipulates, such as entity instances, attribute instances, relationship instances, and so
on.

The model set also contains metadata, a description of the objects and properties that
may occur within the application's data.

Each metadata object may include one or more tags. A tag is a metadata object
property that conveys certain descriptive meta information, such as if an object class is
logical, physical, valid for a specific target DBMS, and so on.

Note: A tag on an object aggregation overrides the identical tag set on the associated
owned object class. A tag on a property association overrides the identical tag set on the

associated property class.

The following table lists some of the EMX metadata tags:

Tag Name

Datatype Description

tag_Bit_Field_Values

tag_Bit_Field_Values_2

String Describes valid values for a bit field property. A
combination of values from the description list can be
used as a value for the property.

The descriptions are grouped as follows:

{<value>|<string equivalent>|<internal>}

DBMS_Brands_And_Versions Integer, vector Defines conditions when an object or property class is

available for physical modeling with the specific
DBMS. Assumes that the tag_Is_Physical has a TRUE
value.

Absence of the tag indicates that the class is available
for all DBMS targets, but only if tag_Is_Physical has a
TRUE value.

A NULL value for the tag indicates that the class is not
available for any DBMS.

DBMS brand IDs are described in the next table.

182 API Reference Guide

Metadata Organization

Tag Name

Datatype

Description

DBMS_Is_Represented

Integer, vector

Defines conditions when an object or property class
represents a concept in the specific DBMS. Assumes
that the DBMS_Brands_And_Versions tag is valid for
the class.

Absence of the tag indicates that the class is available
for all DBMS targets, but only if the
DBMS_Brands_And_Versions tag is valid for the class.
A NULL value for the tag indicates that the class is not
available for any DBMS.

DBMS brand IDs are described in the next table.

DBMS_Is_Top_Level_Object

Integer, vector

Defines conditions when an object class is considered
top level, such as when it has a CREATE or DROP
statement associated with it for the specific DBMS.
Assumes that the DBMS_Is_Represented tag is valid
for the class.

Absence of the tag indicates that the class is available
for all DBMS targets, if the DBMS_Is_Represented tag
is valid for the class.

A NULL value for the tag indicates that the class is not
a top level object for any DBMS.

DBMS brand IDs are described in the next table.

tag_Enum_Values String Describes valid values for an enumerated property.
Only one value from the description list can be used

tag_Enum_Values_10 as a value for the property.
The descriptions are grouped as follows:
{<value>|<string equivalent>|<internal>}

tag_Is_Font_Or_Color Boolean TRUE for classes responsible for model data
visualization.

tag_Is_For_Data_Movement Boolean TRUE for an object or property class that is available
for dimensional and data warehouse modeling.

tag_Is_Graphic_Data Boolean TRUE for classes responsible for model data
visualization.

tag_Is_Logical Boolean TRUE for an object or property class that is available
for logical modeling.

tag_ls_Physical Boolean TRUE for an object or property class that is available
for physical modeling.

tag_Holds_User_Settings Boolean TRUE for classes responsible for storing options for

erwin DM features.

Appendix B: erwin DM Metamodel 183

Metadata Organization

DBMS specific tags, such as DBMS_Brands_And_Versions, DBMS_Is_Represented, and
DBMS_Is_Top_Level_Object, are vectors and organize data in groups of triplets as
described below:

First element

Specifies the DBMS brand ID.
Second element

Specifies the minimum version level for the DBMS, multiplied by 1000.
Third element

Specifies the maximum version level for the DBMS, multiplied by 1000; 999000
indicates the absence of a maximum level.

For example, consider the property Oracle_Index_Partition_Type. It contains a
DBMS-specific tag, DBMS_Brands_And_Versions. This tag contains three elements
specific for this property: 1075858979, 8000, 999000. The first element, the DBMS
brand ID, is for Oracle, which is 1075858979. The second element, the minimum version
level for this DBMS, multiplied by 1000, is 8000. This means the minimum DBMS version
level for this DBMS, which is Oracle, is 8.0. The third element, the maximum version
level for this DBMS, is 999000, which means there is no maximum version level for this
DBMS.

The following table lists DBMS brand IDs:

DBMS Brand DBMS Brand ID
DB2 fori 1075859019
DB2 for LUW 1075858977
DB2 for z/0S 1075858978
Hive 1075859187
Informix 1075859006
MySQL 1075859129
ODBC/Generic 1075859009
Oracle 1075858979
PostgreSQL 1075918977
Progress 1075859010
SAS 1075859013
SQL Server 1075859016
SQL Azure 1075859180
SAP ASE 1075859017

184 API| Reference Guide

XML Schema

DBMS Brand DBMS Brand ID
SAP 1Q 1075859130
Teradata 1075859018

Abstract Metadata Objects

The metadata organization makes use of generalizations with the ability to derive a
specialized object class from an abstract object class using generalization association.
Specialized classes can then be marked as abstract, and then they can be used as a
source for further specializations.

Only instances of the concrete, non-abstract object classes may occur within the
application's data. erwin DM uses the generalization mechanism to flatten metadata by

replicating aggregations, associations, and tags from the abstract object classes in the
concrete object classes.

Metamodel Classes

XML Schema

A unique metadata class identifies what type of metadata a model set contains.

EMX Class Model Set

Contains the bulk of model data such as entities and attributes. The class name is
EMX and the class identifier is the value defined in the Application Environment
component, category Application, property EMX_Metadata_Class.

EM2 Class Model Set

Stores additional data such as user interface settings and user options for erwin DM
services such as Forward Engineering and Complete Compare. The class name is
EM?2 and the class identifier is the value defined in the Application Environment
component, category Application, property EM2_Metadata_Class.

You can use the XML schema provided with this product to view metadata descriptions.

An XML schema is a document or a set of documents that defines the XML file's

structure and legal elements. XML schemas can be used to ensure that an XML file is
syntactically correct and conforms to the defined schema. erwin DM provides such a
schema and uses the schema to validate XML files when they are opened in the tool.

Appendix B: erwin DM Metamodel 185

XML Schema

The erwin DM installation places the complete set of XML schema files necessary for an
XML file validation into the \Doc directory. The schema files have .xsd extensions and
are described in the following list:

m erwinSchema.xsd is the top level schema file.

m UDP.xsd is the schema file for UDP definitions.

m EMX.xsd is the schema file for object hierarchy.

m EM2.xsd is the schema file for non-transactional data.

m EMXProps.xsd is the schema file for object properties and UDP instances.

XML schemas contain descriptions of model object and property classes and define
property containment by object classes. Schema definitions for EMX and EM2 classes
are provided. XML schemas do not include deprecated classes.

The following diagram illustrates the five erwin DM XML schema files:

The schema files under the \Doc directory are not database-specific and represent the
entire erwin DM metamodel. The schema contains all possible objects and properties
for all valid database targets. If you need database-specific schema, those files are
located in the Doc\DBMS_schemas directory. Within the Doc\DBMS_schemas directory,
there is a folder for each supported target database. The database-specific schema files
are stored in that folder and only consist of objects and properties that are valid for the
given database target.

Note: The XML schema that is in the \Doc directory is always used by erwin DM to
validate an XML file; the database-specific schema is not used. The database-specific
schemas are provided for documentation purposes and to assist third-party tool
integrators to determine the valid objects and properties for a given database target. An
external XML validation tool can be used to validate an XML file against a
database-specific schema.

186 API Reference Guide

	erwin Data Modeler API Reference Guide
	Documentation Changes
	Contact erwin
	Contents
	Introduction to API
	Major Features
	Typical Use Cases
	Standalone Client
	Add-in Component or Script

	API Components
	Overview
	Application Tier
	Model Directory Tier
	Sessions Tier
	Model Data Tier

	Access to Model Data
	Objects and Properties
	Object Identifiers
	Object Identifiers and Type Codes
	Properties, Property Flags, and Value Facets
	Scalar and Non-Scalar Property Values

	Collections and Automation
	_NewEnum Property of a Collection Object
	Default Properties
	Optional Parameter

	The API Sample Client
	Using the API Sample Client
	Register the Add-in Component
	Make a VB.NET Library COM Callable

	erwin Spy
	How the erwin Spy Application Works

	API Tasks
	API Environment
	Creating the ISCApplication Object
	Application Properties
	ISCApplication Interface
	ISCApplicationEnvironment

	Accessing a Model
	Using the API as an Add-in Tool
	ISCApplication Interface
	ISCPersistenceUnitCollection Interface
	ISCPersistenceUnit Interface
	Property Bag Members for a Persistence Unit
	ISCPropertyBag Interface

	Using the API as a Standalone Executable
	Creating a Model
	ISCPersistenceUnitCollection Interface
	ISCPropertyBag Interface

	Opening an Existing Model
	ISCPersistenceUnitCollection Interface

	Opening a Session
	ISCSessionCollection Interface
	ISCSession Interface

	Accessing a Model Set
	ISCPersistenceUnit Interface
	ISCModelSet Interface
	ISCModelSetCollection Interface
	ISCSession Interface

	Accessing Objects in a Model
	ISCSession Interface
	ISCModelObjectCollection Interface
	ISCModelObject Interface
	Accessing a Specific Object
	ISCModelObjectCollection Interface

	Filtering Object Collections
	ISCModelObjectCollection Interface

	Accessing Object Properties
	Iteration of Properties
	ISCModelObject Interface
	ISCModelPropertyCollection Interface
	ISCModelProperty Interface

	ISCModelProperty Interface
	Iterating Over Non-Scalar Property Values
	ISCModelProperty Interface
	ISCPropertyValueCollection Interface
	ISCPropertyValue Interface

	Accessing a Specific Property
	ISCPropertyValueCollection Interface

	Filtering Properties
	ISCModelObject Interface

	Modifying the Model Using Session Transactions
	Begin Transaction
	ISCSession Interface

	Commit Transaction
	ISCSession Interface

	Creating Objects
	ISCModelObjectCollection Interface

	Setting Property Values
	Setting Scalar Property Values
	ISCModelProperty Interface

	Setting Non-Scalar Property Values
	ISCModelProperty Interface

	Deleting Objects
	ISCModelObjectCollection Interface

	Deleting Properties and Property Values
	ISCModelPropertyCollection Interface
	ISCModelProperty Interface
	Deleting Non-Scalar Property Values

	Saving the Model
	ISCPersistenceUnit Interface

	Accessing Metamodel Information
	ISCApplicationEnvironment Interface
	ISCSession Interface

	Closing the API
	ISCSession Interface
	ISCSessionCollection Interface
	Clearing Persistence Units
	ISCPersistenceUnitCollection Interface

	Error Handling
	ISCApplicationEnvironment

	Advanced Tasks
	Creating User-Defined Properties
	History Tracking
	ISCSession Interface

	API Interfaces Reference
	ISCApplication
	API Interfaces
	ISCApplicationEnvironment
	ISCApplicationEnvironment::PropertyBag Arguments

	ISCModelDirectory
	ISCModelDirectory::DirectoryExists Arguments
	ISCModelDirectory::DirectoryUnitExists Arguments
	ISCModelDirectory::IsOfType Arguments
	ISCModelDirectory::LocateDirectory Arguments
	ISCModelDirectory::LocateDirectoryUnit Arguments
	ISCModelDirectory::PropertyBag Arguments (Get Function)
	ISCModelDirectory::PropertyBag Arguments (Set Function)

	ISCModelDirectoryCollection
	ISCModelDirectoryCollection::Add Arguments
	ISCModelDirectoryCollection::Item Arguments
	ISCModelDirectoryCollection::Remove Arguments

	ISCModelDirectoryUnit
	ISCModelDirectoryUnit::IsOfType Arguments
	ISCModelDirectoryUnit::PropertyBag Arguments (Get Function)
	ISCModelDirectoryUnit::PropertyBag Arguments (Set Function)

	ISCModelObject
	ISCModelObject::CollectProperties Arguments
	ISCModelObject::IsInstanceOf Arguments

	ISCModelObjectCollection
	ISCModelObjectCollection::Add Arguments
	ISCModelObjectCollection::Collect Arguments
	ISCModelObjectCollection::Item Arguments
	ISCModelObjectCollection::Remove Arguments

	ISCModelProperty
	ISCModelProperty::DataType Arguments
	ISCModelProperty::RemoveValue Arguments
	ISCModelProperty::Value Arguments (Get Function)
	ISCModelProperty::Value Arguments (Set Function)
	ISCModelProperty::GetValueFacetIds Arguments
	ISCModelProperty::GetValueFacetNames Arguments
	ISCModelProperty::SetValueFacets Arguments

	ISCModelPropertyCollection
	ISCModelPropertyCollection::Add Arguments
	ISCModelPropertyCollection::HasProperty Arguments
	ISCModelPropertyCollection::HasPropertyFacets Arguments
	ISCModelPropertyCollection::Item Arguments
	ISCModelPropertyCollection::Remove Arguments

	ISCModelSet
	ISCModelSet::PropertyBag Arguments (Get Function)
	ISCModelSet::PropertyBag Arguments (Set Function)

	ISCModelSetCollection
	ISCModelSetCollection::Item Arguments

	ISCPersistenceUnit
	ISCPersistenceUnit::PropertyBag Arguments (Get Function)
	ISCPersistenceUnit::PropertyBag Arguments (Set Function)
	ISCPersistenceUnit::Save Arguments
	ISCPersistenceUnit::ReverseEngineer
	ISCPersistenceUnit::ForwardEngineer

	ISCPersistenceUnitCollection
	ISCPersistenceUnitCollection::Add Arguments
	ISCPersistenceUnitCollection::Create Arguments
	ISCPersistenceUnitCollection::Item Arguments
	ISCPersistenceUnitCollection::Remove Arguments

	ISCPropertyBag
	ISCPropertyBag::Add Arguments
	ISCPropertyBag::Name Arguments
	ISCPropertyBag::Value Arguments (Get Function)
	ISCPropertyBag::Value Arguments (Set Function)

	ISCPropertyValue
	ISCPropertyValue::ValueId Arguments
	ISCPropertyValue::Value Arguments

	ISCPropertyValueCollection
	ISCPropertyValueCollection::Item Arguments
	ISCPropertyValueCollection::Facet Arguments (Get Function)
	ISCPropertyValueCollection::Facet Arguments (Set Function)
	ISCPropertyValueCollection::RemoveFacet Arguments

	ISCSession
	ISCSession::BeginNamedTransaction Arguments
	ISCSession::CommitTransaction Arguments
	ISCSession::IsTransactionEmpty Arguments
	ISCSession::Open Arguments
	ISCSession::RollbackTransaction Arguments

	ISCSessionCollection
	ISCSessionCollection::Item Arguments
	ISCSessionCollection::Remove Arguments

	Enumerations
	SC_ModelDirectoryFlags
	SC_ModelDirectoryType
	SC_ModelObjectFlags
	SC_ModelPropertyFlags
	SC_SessionFlags
	SC_SessionLevel
	SC_ValueTypes

	Property Bag Reference
	Property Bag for Application Environment
	ISCApplicationEnvironment::PropertyBag
	Category Parameter Contains an Empty String
	Application Category
	Application.API Category
	Application.API.Features Category
	Application.API.MessageLog Category
	Application.Modeling Category
	Application.Modeling.Physical Category
	Application.Persistence Category
	Application.Persistence.FileSystem Category
	Application.Persistence.Mart

	Property Bag for Model Directory and Model Directory Unit
	Property Bag for Persistence Units and Persistence Unit Collections
	ISCPersistenceUnit::PropertyBag Arguments (Get Function)
	ISCPersistenceUnit::PropertyBag Arguments (Set Function)
	Property Bag Contents for Persistence Unit and Persistence Unit Collection

	Property Bag for Session

	Location and Disposition in Model Directories and Persistence Units
	Locator Property
	Disposition Property

	erwin DM Metamodel
	Metadata Element Renaming
	Metadata Organization
	Metamodel Elements
	Metadata Tags
	Abstract Metadata Objects
	Metamodel Classes

	XML Schema

