
erwin Data Modeler

API Reference

Release 2020 R1

Legal Notices

This Documentation, which includes embedded help systems and electronically distributed
materials (hereinafter referred to as the “Documentation”), is for your informational pur-
poses only and is subject to change or withdrawal by erwin Inc. at any time. This Docu-
mentation is proprietary information of erwin Inc. and may not be copied, transferred,
reproduced, disclosed, modified or duplicated, in whole or in part, without the prior written
consent of erwin Inc.

If you are a licensed user of the software product(s) addressed in the Documentation, you
may print or otherwise make available a reasonable number of copies of the Docu-
mentation for internal use by you and your employees in connection with that software,
provided that all erwin Inc. copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the
period during which the applicable license for such software remains in full force and effect.
Should the license terminate for any reason, it is your responsibility to certify in writing to
erwin Inc. that all copies and partial copies of the Documentation have been returned to
erwin Inc. or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, ERWIN INC. PROVIDES THIS
DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT
LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL ERWIN INC. BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM
THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS,
LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF ERWIN
INC. IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applic-
able license agreement and such license agreement is not modified in any way by the terms
of this notice.

The manufacturer of this Documentation is erwin Inc.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Govern-
ment is subject to the restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19
(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2020 erwin Inc. All rights reserved. All trademarks, trade names, service
marks, and logos referenced herein belong to their respective companies.

3

Contact erwin
Understanding your Support

Review support maintenance programs and offerings.

Registering for Support

Access the erwin support site and click Sign in to register for product support.

Accessing Technical Support

For your convenience, erwin provides easy access to "One Stop" support for all editions of
erwin Data Modeler, and includes the following:

Online and telephone contact information for technical assistance and customer ser-
vices

Information about user communities and forums

Product and documentation downloads

erwin Support policies and guidelines

Other helpful resources appropriate for your product

For information about other erwin products, visit http://erwin.com/products.

Provide Feedback

If you have comments or questions, or feedback about erwin product documentation, you
can send a message to techpubs@erwin.com.

erwin Data Modeler News and Events

Visit www.erwin.com to get up-to-date news, announcements, and events. View video
demos and read up on customer success stories and articles by industry experts.

https://erwinhelp.zendesk.com/hc/en-us
https://erwinhelp.zendesk.com/hc/en-us
https://support.erwin.com/hc/en-us/categories/360002276332-erwin-Data-Modeler-Mart-Web-Portal
http://erwin.com/products/
mailto:techpubs@erwin.com
http://erwin.com/

4

Contents

Legal Notices 2

Contents 4

Introduction to API 15

Major Features 16

Typical Use Cases 17

Standalone Client 18

Add-in Component or Script 19

API Components 20

Overview 21

Application Tier 22

Model Directory Tier 24

Sessions Tier 25

Model Data Tier 26

Access to Model Data 28

Objects and Properties 30

Object Identifiers 31

Object Identifiers and Type Codes 32

Properties, Property Flags, and Value Facets 33

Scalar and Non-Scalar Property Values 35

Collections and Automation 36

_NewEnum Property of a Collection Object 38

Default Properties 39

5

Optional Parameter 40

The API Sample Client 41

Using the API Sample Client 42

Register the Add-in Component 43

Make a VB.NET Library COM Callable 43

erwin Spy 44

How the erwin Spy Application Works 45

API Tasks 50

API Environment 51

Creating the ISCApplication Object 52

Application Properties 53

ISCApplication Interface 54

ISCApplicationEnvironment 55

Accessing a Model 59

Using the API as an Add-in Tool 60

ISCApplication Interface 61

ISCPersistenceUnitCollection Interface 62

ISCPersistenceUnit Interface 63

Property Bag Members for a Persistence Unit 64

ISCPropertyBag Interface 66

Using the API as a Standalone Executable 68

Creating a Model 69

ISCPersistenceUnitCollection Interface 70

6

ISCPropertyBag Interface 71

Opening an Existing Model 73

ISCPersistenceUnitCollection Interface 74

Opening a Session 76

ISCSessionCollection Interface 77

ISCSession Interface 78

Accessing a Model Set 80

ISCPersistenceUnit Interface 81

ISCModelSet Interface 82

ISCModelSetCollection Interface 83

ISCSession Interface 84

Accessing Objects in a Model 87

ISCSession Interface 88

ISCModelObjectCollection Interface 89

ISCModelObject Interface 90

Accessing a Specific Object 93

ISCModelObjectCollection Interface 94

Filtering Object Collections 96

ISCModelObjectCollection Interface 97

Accessing Object Properties 104

Iteration of Properties 105

ISCModelObject Interface 106

ISCModelPropertyCollection Interface 107

7

ISCModelProperty Interface 108

ISCModelProperty Interface 110

Iterating Over Non-Scalar Property Values 113

ISCModelProperty Interface 114

ISCPropertyValueCollection Interface 115

ISCPropertyValue Interface 116

Accessing a Specific Property 120

ISCPropertyValueCollection Interface 121

Filtering Properties 123

ISCModelObject Interface 124

Modifying the Model Using Session Transactions 127

Begin Transaction 129

ISCSession Interface 130

Commit Transaction 132

ISCSession Interface 133

Creating Objects 134

ISCModelObjectCollection Interface 135

Setting Property Values 138

Setting Scalar Property Values 139

ISCModelProperty Interface 140

Setting Non-Scalar Property Values 142

ISCModelProperty Interface 143

Deleting Objects 145

8

ISCModelObjectCollection Interface 146

Deleting Properties and Property Values 147

ISCModelPropertyCollection Interface 148

ISCModelProperty Interface 149

Deleting Non-Scalar Property Values 150

Saving the Model 151

ISCPersistenceUnit Interface 152

Accessing Metamodel Information 154

ISCApplicationEnvironment Interface 155

ISCSession Interface 156

Closing the API 158

ISCSession Interface 159

ISCSessionCollection Interface 160

Clearing Persistence Units 162

ISCPersistenceUnitCollection Interface 163

Error Handling 164

ISCApplicationEnvironment 166

Advanced Tasks 169

Creating User-Defined Properties 170

History Tracking 174

ISCSession Interface 175

API Interfaces Reference 177

ISCApplication 178

9

API Interfaces 179

ISCApplicationEnvironment 180

ISCApplicationEnvironment::PropertyBag Arguments 181

ISCModelDirectory 182

ISCModelDirectory::DirectoryExists Arguments 184

ISCModelDirectory::DirectoryUnitExists Arguments 185

ISCModelDirectory::IsOfType Arguments 186

ISCModelDirectory::LocateDirectory Arguments 187

ISCModelDirectory::LocateDirectoryUnit Arguments 188

ISCModelDirectory::PropertyBag Arguments (Get Function) 189

ISCModelDirectory::PropertyBag Arguments (Set Function) 190

ISCModelDirectoryCollection 191

ISCModelDirectoryCollection::Add Arguments 192

ISCModelDirectoryCollection::Item Arguments 193

ISCModelDirectoryCollection::Remove Arguments 194

ISCModelDirectoryUnit 195

ISCModelDirectoryUnit::IsOfType Arguments 197

ISCModelDirectoryUnit::PropertyBag Arguments (Get Function) 198

ISCModelDirectoryUnit::PropertyBag Arguments (Set Function) 199

ISCModelObject 200

ISCModelObject::CollectProperties Arguments 202

ISCModelObject::IsInstanceOf Arguments 204

ISCModelObjectCollection 205

10

ISCModelObjectCollection::Add Arguments 207

ISCModelObjectCollection::Collect Arguments 208

ISCModelObjectCollection::Item Arguments 210

ISCModelObjectCollection::Remove Arguments 211

ISCModelProperty 212

ISCModelProperty::DataType Arguments 215

ISCModelProperty::RemoveValue Arguments 216

ISCModelProperty::Value Arguments (Get Function) 217

ISCModelProperty::Value Arguments (Set Function) 218

ISCModelProperty::GetValueFacetIds Arguments 219

ISCModelProperty::GetValueFacetNames Arguments 220

ISCModelProperty::SetValueFacets Arguments 221

ISCModelPropertyCollection 222

ISCModelPropertyCollection::Add Arguments 225

ISCModelPropertyCollection::HasProperty Arguments 226

ISCModelPropertyCollection::HasPropertyFacets Arguments 227

ISCModelPropertyCollection::Item Arguments 229

ISCModelPropertyCollection::Remove Arguments 230

ISCModelSet 231

ISCModelSet::PropertyBag Arguments (Get Function) 233

ISCModelSet::PropertyBag Arguments (Set Function) 234

ISCModelSetCollection 235

ISCModelSetCollection::Item Arguments 236

11

ISCPersistenceUnit 237

ISCPersistenceUnit::PropertyBag Arguments (Get Function) 239

ISCPersistenceUnit::PropertyBag Arguments (Set Function) 240

ISCPersistenceUnit::Save Arguments 241

ISCPersistenceUnit::ReverseEngineer 242

ISCPersistenceUnit::ForwardEngineer 250

ISCPersistenceUnitCollection 252

ISCPersistenceUnitCollection::Add Arguments 253

ISCPersistenceUnitCollection::Create Arguments 254

ISCPersistenceUnitCollection::Item Arguments 255

ISCPersistenceUnitCollection::Remove Arguments 256

ISCPropertyBag 257

ISCPropertyBag::Add Arguments 258

ISCPropertyBag::Name Arguments 259

ISCPropertyBag::Value Arguments (Get Function) 260

ISCPropertyBag::Value Arguments (Set Function) 261

ISCPropertyValue 262

ISCPropertyValue::ValueId Arguments 264

ISCPropertyValue::Value Arguments 265

ISCPropertyValueCollection 266

ISCPropertyValueCollection::Item Arguments 267

ISCPropertyValueCollection::Facet Arguments (Get Function) 268

ISCPropertyValueCollection::Facet Arguments (Set Function) 269

12

ISCPropertyValueCollection::RemoveFacet Arguments 270

ISCSession 271

ISCSession::BeginNamedTransaction Arguments 273

ISCSession::CommitTransaction Arguments 274

ISCSession::IsTransactionEmpty Arguments 275

ISCSession::Open Arguments 276

ISCSession::RollbackTransaction Arguments 277

ISCSessionCollection 278

ISCSessionCollection::Item Arguments 279

ISCSessionCollection::Remove Arguments 280

Enumerations 281

SC_ModelDirectoryFlags 282

SC_ModelDirectoryType 283

SC_ModelObjectFlags 284

SC_ModelPropertyFlags 285

SC_SessionFlags 286

SC_SessionLevel 287

SC_ValueTypes 288

Property Bag Reference 290

Property Bag for Application Environment 291

ISCApplicationEnvironment::PropertyBag 292

Category Parameter Contains an Empty String 293

Application Category 294

13

Application.API Category 295

Application.API.Features Category 296

Application.API.MessageLog Category 298

Application.Modeling Category 300

Application.Modeling.Physical Category 301

Application.Persistence Category 302

Application.Persistence.FileSystem Category 303

Application.Persistence.Mart 304

Property Bag for Model Directory and Model Directory Unit 305

Property Bag for Persistence Units and Persistence Unit Collections 308

ISCPersistenceUnit::PropertyBag Arguments (Get Function) 308

ISCPersistenceUnit::PropertyBag Arguments (Set Function) 309

Property Bag Contents for Persistence Unit and Persistence Unit Collection 309

Property Bag for Session 314

Location and Disposition in Model Directories and Persistence Units 315

Locator Property 316

Disposition Property 319

erwin DM Metamodel 321

Metadata Element Renaming 322

Metadata Organization 323

Metamodel Elements 324

Metadata Tags 324

Abstract Metadata Objects 328

14

Metamodel Classes 328

XML Schema 329

15

Introduction to API

The Script Client API that is part of erwin DM provides advanced customization capabilities
that enable you to access and manipulate modeling data in memory at runtime, as well as
models persisted in files and in a mart. The API interfaces are automation-compatible and
provide extensive design and runtime facilities for third-party integrators as well as users of
script-based environments.

The API complements the original modeling tool with custom components when you use
scripts, add-ins, and COM-based API technologies. The API is flexible and promotes a seam-
less integration of the modeling tool in a client development cycle.

This section contains the following topics

Major Features
Typical Use Cases

16

Major Features

The API is a group of interfaces that includes the following features:

Active Model Data Objects (AMDO)

Lets a third-party client to access model data through a COM automation-compatible
API. This feature is the major component in the API functionality. All interfaces that
comprise the API are automation-based, and are therefore dual. These dual interfaces
allow you faster access to methods and properties. Using dual interfaces, you can dir-
ectly call the functions without using an Invoke() function.

Collections and enumerators

Facilitates programming constructions in script languages that target the AMDO auto-
mation features.

Connection points

Delivers a collection of connection points interfaces and support for the ITypeInfo2
interface to support the sync event facilities of languages.

Automation-rich error handling

Supports automation-rich error handling through IErrorInfo interfaces exposed by the
API components.

Active Model Directory

Lets you navigate available model storage, including marts. Delivers the ability for a
client to open or to create a model in a file as well as from a mart.

Active Scripting

Lets you host a scripting environment and provide an invocation mechanism for script
and add-in components. A mechanism is provided to register add-ins and scriplets
with the Active Scripting environment.

17

Typical Use Cases

The typical use cases of the API are automation and scripts to support specific interface
design requirements imposed by COM automation standards. For example, you can be lim-
ited to a single incoming and outgoing interface exposed by any particular COM object. This
limitation is due to the fact that the only recognizable interface type for pure automation is
IDispatch and it renders the use of QueryInterface functionality unfit. The common tech-
nique to address the problem includes Alternate Identities and read-only properties that
expose secondary interfaces.

Another example of a targeted domain customer is one using alternative (not C++) lan-
guages to implement a client. The list includes Visual Basic, VB Script, Java Script, and so on.
The list includes specially tailored language idioms to encapsulate language-COM binding,
such as collections of objects, connection points, rich error handling, and so on.

The API combines number of components and presents them as a set of interfaces access-
ible using COM.

The list of integrated components includes erwin Data Modeler and Microsoft Internet
Explorer.

18

Standalone Client

One of the ways the API is used is as a standalone client. A third-party client activates the
API as an in-process server. The API component does not have visual representation, that is,
it does not expose a user interface. The API provides Active Model Directory facilities to spe-
cify a target model from a list of available models. Active Model Data Objects provide ses-
sion-based access to model data.

There are times when API clients can compete with other parties over access to model data.
Using erwin Data Modeler Workgroup Edition provides advanced model sharing facilities
to prevent other parties from accessing the model during your session.

19

Add-in Component or Script

Another way the API is used is as an add-in component or script. erwin DM hosts third-party
add-in modules and scripts. The Active Scripting component in the API provides a mech-
anism for registering modules with a host tool, arranging representation in the host user
interface, creating add-in menus, and invoking them on the host menu selection or event.

The add-in module is a client DLL, activated in-process.

The script is a VBScript or JScript procedure embedded in a DHTML document, activated
using a menu or a model event. This Active Scripting provides hosting for web browser con-
trol and makes the API objects available through the window.external property of the
DHTML object model.

You can observe changes in a model on the screen and can activate a pause to investigate
the state of a model by accessing the modeling tool user interface.

20

API Components
This section contains the following topics

Overview
Access to Model Data
Objects and Properties
Collections and Automation
The API Sample Client
erwin Spy

21

Overview

The API is a collection of interfaces that represent erwin DM functionality. The application
exports the top-level interface, from which the client obtains lower-level interfaces as
needed. Interfaces are logically grouped into tiers, where each tier includes interfaces that
represent the functionality of the application. Each tier is represented in the following sec-
tions, with a table describing the interfaces grouped into that tier.

22

Application Tier

The Application Tier represents erwin DM functionality, establishes access to models in per-
sistent storage, and controls the exchange between models in memory and models in per-
sistent storage. The following table describes the interfaces of the Application Tier:

Interface Role

ISCApplication Represents application-wide functionality, and
serves as the entry point for the interface hierarchy
of the API. Holds a list of available persistence units
and connections between the client and persistence
units.

ISCApplicationEnvironment Provides information about the runtime envir-
onment.

ISCPersistenceUnitCollection Collects all active persistence units known to the
application.

ISCPersistenceUnit Represents an active persistence unit (such as a
erwin DM model) within the application. A per-
sistence unit groups data in the form of model sets.
Clients can connect to persistence units to manip-
ulate them and the data they contain.

ISCModelSetCollection Represents model sets associated with a persistence
unit.

ISCModelSet Represents a model set (such as EMX or EM2 classes
of model data) within a single persistence unit.

ISCPropertyBag Represents an array of properties for application
tier interface calls.

This is a graphical representation of the relationships of the Application Tier:

23

24

Model Directory Tier

The Model Directory Tier accesses and manipulates the persistence storage directories,
such as a file system directory or a mart directory. The following table describes the inter-
faces of the Model Directory Tier:

Interface Role

ISCModelDirectoryCollection Enumerates all top-level model directories avail-
able for the API client.

ISCModelDirectory Encapsulates information on a single model dir-
ectory entry.

ISCModelDirectoryUnit Encapsulates information on a single directory
unit.

This is a graphical representation of the relationships of the Model Directory Tier:

25

Sessions Tier

The Sessions Tier establishes access to model data in memory. The following table describes
the interfaces of the Sessions Tier:

Interface Role

ISCSessionCollection Collects all active sessions between the API client and the per-
sistence units.

ISCSession Represents an active connection between the client and a
model. Clients create sessions, and then open them against
model sets of persistence units. An open session exposes a
single level (such as data, metadata, and so on) of a model set.

This is a graphical representation of the relationships of the Sessions Tier:

26

Model Data Tier

The Model Data Tier accesses and manipulates model data. The following table describes
the interfaces of the Model Data Tier:

Interface Role

ISCModelObjectCollection Represents objects available for manipulation.
Membership in this collection can be limited by
establishing filter criteria.

ISCModelObject Accesses and manipulates a single object within a
model.

ISCModelPropertyCollection Represents a list of properties owned by a single
object. The list can be limited by using filters.

ISCModelProperty Accesses and manipulates a single property. Prop-
erties may contain multiple values. Values within
a multi-valued property are accessed by keys.
The current multi-valued property imple-
mentation treats the value list as an array, and
the key is the array index.

ISCPropertyValueCollection Represents a list of single property values.

ISCPropertyValue Data and a key are contained within a single
value.

This is a graphical representation of the relationships of the Model Data Tier:

27

28

Access to Model Data

The API allows API clients to manipulate models. An API client locates models in persistence
storage by using the Model Directory Collection, Model Directory, and the Model Directory
Unit components. By using its properties, the Model Directory Unit provides the information
necessary to register the unit with the pool of available persistence units by using the Per-
sistence Units collection. The API client can then specify access attributes such as read-only
or ignore locks. A new model can be created and registered with a persistence unit col-
lection. erwin DM can add or remove models from the pool as a response to user interface
actions.

A persistence unit maintains a set of properties to control visibility in the application user
interface, access attributes, and so on. A persistence unit organizes data as a group of linked
model sets. The model sets are arranged in a tree-like hierarchy with a single model set at
the top. The top model set in the persistence unit contains the bulk of the modeling data.
The API uses the abbreviation EMX to identify the top model set. The EMX model set owns a
secondary model set abbreviated as EM2, that contains user options and user interface set-
tings.

API clients access the model data by constructing a session and connecting it to a model set
using the Session component. A model set contains several levels of data. It contains the
data the application manipulates, such as entity instances, attribute instances, or rela-
tionship instances.

The model set also contains metadata, which is a description of the objects and properties
that may occur within the application's data. In erwin DM, metadata includes object and
property classes, object aggregations, and property associations. The metadata defines each
object class that may occur within a model, for example, an entity class, an attribute class,
or a relationship class. Object aggregations identify an ownership relationship between
classes of objects. For example, a model owns entities, entities own attributes, and so on.
The property associations define property usage by object classes. For instance, the
metadata includes property associations for every object class that has the Name property.

Clients specify the necessary level of model data at the same time as connecting a session
to a model set. When a new model is created it acquires a set of default objects, such as

29

model object, main subject area, and stored display. The initial API implementation supports
the following levels:

Name Descrip-
tion

Supported Actions

SCD_
SL_
M0

Model
Level

Access model data, create and delete objects (including
the entire model), and set property values.

SCD_
SL_
M1

Metamodel
Level

Access object and property definitions, along with other
metadata. Create and delete user-defined properties
and user-defined object definitions.

Levels are identified by long integer values. Values have symbolic definitions.

30

Objects and Properties

The API presents data in object/property form. In a erwin DM model, for example, an attrib-
ute is represented by an instance of an Attribute object. The name of the attribute is con-
tained in the Name property of the Attribute object.

31

Object Identifiers

Each object must bear an identifier, which is a value that uniquely identifies the object
instance. Internally, object identifiers are 20 bytes long. They contain two components: a
GUID (also known as a UUID) in the first 16 bytes, and a 32-bit unsigned integer suffix in the
last 4 bytes.

A GUID contains the following components:

One 32-bit unsigned integer

Two 16-bit unsigned integers

Eight 8-bit unsigned integers (represented as unsigned characters)

These components total of 128 bits, or 16 bytes. Therefore, an object identifier contains an
extra 32-bit unsigned integer (the 4 byte suffix) at the end for a total of 160 bits, or 20 bytes.

To simplify working with object identifiers and due to COM automation limitations on data-
types, the API uses a string to represent object identifiers.

The following table lists aliases used in this guide and in the interface definitions:

Type Name Format Use

SC_OBJID {xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx}+suffix

Object identifier

SC_CLSID {xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx}+suffix

Class (object, property type, and so
on) identifier

SC_
MODELTYPEID

{xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx}+suffix

Model type identifier

SC_
CREATORID

{xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx}

Creator identifier

The identifiers whose GUID component contains zero is one set of object identifiers that is
predefined. If the final 4 bytes of the identifier also contain zero, the identifier represents a
null identifier. Other values of the offset are reserved for future use.

32

Object Identifiers and Type Codes

Consider the relationship between object instances in the SCD_SL_ M0 layer and object
instances in the SCD_SL_ M1 layer. An instance in the SCD_SL_ M0 layer is described by an
instance in the SCD_SL_ M1 layer. For instance, a single object in the SCD_SL_ M1 layer
describes every entity instance in the SCD_SL_ M0 layer.

Since all type codes are also object identifiers, they must have the same format.

33

Properties, Property Flags, and Value Facets

Properties present data in the form of values and additional flags.

Property values are either scalar with a single value, or non-scalar with multiple values.
More information about scalar and non-scalar property values is located in the Scalar and
Non-Scalar Property Values section.

Property values are defined by a property type, such as a string or an integer. More inform-
ation about property types is located in the Enumerations section.

Two types of additional property flags exist:

Property level flags

Provide information about the property and are read-only. Property level flags can
provide the following information about a property instance:

Metadata information

Shows whether a property in the metadata is user-defined or contains a scalar
value.

Property state information

Shows whether or not a property is read-only.

Data source information

Shows whether or not a data source is calculated.

Property value level flags

Convey information about property value and can be updated.

An individual property level flag is represented by a bit field in the property flag's value. The
flags are provided for information only and cannot be changed. More information about spe-
cific property flags is located in the Enumerations section.

The value level flags, or facets, convey additional data associated with property value such
as if a property value was 'hardened' and cannot be changed due to inheritance.

34

An individual facet is identified by a numeric ID or a name and has one of three possible
states: non-set, set to TRUE, or set to FALSE.

The facets are treated as part of the property value. Assigning a new value to a property
places all facets in the non-set state. Similarly, a value update or removal renders all facets
into the non-set state. There is only one combination of facets per property, either scalar or
non-scalar. Changes in individual values of non-scalar properties do not affect the property
facets. More information about specific value facets is located in the Property Bag for
Application Environment section.

35

Scalar and Non-Scalar Property Values

A scalar property is a property that can be represented as a single value. The properties that
contain multiple values (either homogeneous or heterogeneous) are non-scalar properties.

The type of a property can be recognized by reviewing the property flags. Scalar properties
have a SCD_MPF_SCALAR flag.

More information about specific property flags is located in the Enumerations section.

The value of a scalar property or a single member of a non-scalar property is accessed
through the Value property of the ISCModelProperty interface.

Note: Heterogeneous non-scalar properties are not supported by this product. Members in
a non-scalar property always have the same datatype.

A property, either scalar or non-scalar, can have a special NULL value. The properties with a
NULL value have a SCD_MPF_NULL flag set.

36

Collections and Automation

Automation defines the IEnumVARIANT interface to provide a standard way for the API cli-
ents to iterate over collections. Every collection interface in the API exposes a read-only
property named _NewEnum to let the API clients know that the collection supports iteration.
The _NewEnum property returns a pointer on the IEnumVARIANT interface.

The IEnumVARIANT interface provides a way to iterate through the items contained by a col-
lection. This interface is supported by an enumerator interface that is returned by the _
NewEnum property of the collection.

The IEnumVARIANT interface defines the following member functions:

Next

Retrieves one or more elements in a collection starting with the current element.

Skip

Skips over one or more elements in a collection.

Reset

Resets the current element to the first element in the collection.

Clone

Copies the current state of the enumeration so you can return to the current element
after using Skip or Reset.

The IEnumVARIANT collection implements a Rogue Wave Software, Inc. style advance and
return iteration. For this reason, they have the following life cycle:

37

When the iterator is created, it enters the Created state, and then forces itself into the
BeforeStart state. A successful advance drives the iterator into the InList state, while an
unsuccessful advance drives it into the AtEnd state. A Reset drives the iterator back to the
BeforeStart state, and deletion drives it into the Deleted state.

Note: The iterator is positioned over a member of the collection (that is, associated with a
current member) only if it is in the InList state.

38

_NewEnum Property of a Collection Object

The _NewEnum property identifies support for iteration through the IEnumVARIANT inter-
face. The _NewEnum property has the following requirements:

The name is _NewEnum.

It returns a pointer to the enumerator IUnknown interface.

The Dispatch identification for the property is DISPID = DISPID_NEWENUM (-4).

39

Default Properties

A default property for automation is the property that is accessed when the object is
referred to without any explicit property or method call. The property dispatch identifier is
DISPID_VALUE.

40

Optional Parameter

To support automation client requirements, all optional parameters are represented as
VARIANT. For that reason, a parameter type in an interface description is only to document
an expected type in the VARIANT structure.

41

The API Sample Client

Two Visual Basic .NET sample projects are provided with the API, erwinSpy.NET.x64.exe and
erwinSpy.NET.x86.exe.

If you run the Custom Setup type of installation, select the erwin API Sample Client when
prompted to select the program features that you want to install. After installation, you can
access the two sample Visual Basic .NET projects from the erwinSpy.NET subdirectory in the
erwin Data Modeler installation folder.

42

Using the API Sample Client

This section describes how to utilize the API sample client as a standalone version and as an
add-in component.

The standalone version of the sample program is either erwinSpy.NET.x86.exe or
erwinSpy.NET.x64.exe. You can build erwinSpy.NET to create erwinSpy.NET.x86.exe or
erwinSpy.NET.x64.exe. This program is a erwin DM model data browser that you can use to
research data internals, such as the metamodel, model data, and model objects and their
properties.

Using erwinSpy.NET.x86.exe or erwinSpy.NET.x64.exe, you can open an *.erwin file by click-
ing Open on the File menu. When a model is opened or selected from File menu, model
objects from the model are displayed in the left pane. You can view a model object's hier-
archy (parents and children) and properties by double-clicking on the object.

You can access the model data and metamodel information from the Models menu. Use the
Models submenu to access the model data and the MetaModels, EM2 ModelSets, EM2
ModelSets Meta submenus to access the metamodel data.

The add-in version of the sample program is erwinSpy_Addin.NET project. You can use the
erwinSpy_Addin.NET to create a 32-bit (erwinSpy_AddIn.NET.x86.dll) or 64-bit (erwinSpy_
AddIn.NET.x64.dll) add-in component. The add-in component runs when you select it from
the Tools, Add-Ins menu. After you build the add-in component with the erwinSpy_Addin.NET
project, you must register it.

43

Register the Add-in Component

After you build the add-in component with the erwinSpy_AddIn.NET project, you must
register it.

To register the add-in component

 1. Navigate to the erwinSpy.NET\bin folder in the installation directory.

 2. Copy the add-in component to the erwinSpy.NET\bin folder.

 3. Rename the add-in depending on your operating environment.

For a 32-bit application, rename the add-in to erwinSpy_AddIn.NET.x86.dll

For a 64-bit application, rename the add-in to erwinSpy_AddIn.NET.x64.dll

 4. Enter one of the following commands in the command prompt depending on your
operating environment.

For a 32-bit application, enter register.bat 32

For a 64-bit application, enter register.bat 64

The add-in component is registered.

Make a VB.NET Library COM Callable

The VB.NET library is not loaded automatically to erwin Data Modeler. You have to make
the VB.NET library COM callable.

Follow these steps:

 1. Create a VB.NET library project in Visual Studio 2013.

 2. Add a COM template class.

 3. Right-click on Project and select Add, Component, COM class.

 4. Copy the RegisterFunction, UnregisterFunction, and GetSubKeyNmae function from
erwinSpy.vb in erwinSpy_AddIn.NET project to the COM template class.

 5. Add your public function which can be shared with other users.

The VB.NET library is now COM callable.

44

erwin Spy

The erwin Spy application visualizes metadata information and provides intrinsic and model-
specific metadata. It demonstrates the API functionality and provides a set of useful features
to study how model data is stored. erwin Spy reads the erwin DM metamodel and simplifies
the task of comprehending the intricate details of any erwin DM model, which can be a com-
plicated net of model objects, properties, and cross-references. When you install erwin DM,
you can choose to install the optional erwin Spy utility.

There are two versions of the utility available in the erwin Spy.NET\bin folder, the stan-
dalone version, erwinSpy.NET.exe, and the add-in version, erwinSpy_AddIn.NET.dll.

These versions are identical in functionality and vary only in how you want to launch the
application. The standalone version runs without erwin DM present and can access models
stored in .erwin files, while the add-in version launches within erwin DM from the Tools
menu and can access models stored in either erwin DM memory or in .erwin files.

Note: See the Add-In Manager online help for more information about defining an add-in
software application for the Tools, Add-Ins menu.

45

How the erwin Spy Application Works

To see how erwin Spy can help you visualize metadata information, do the following:

Start with an empty logical-physical model.

Click erwin Spy on the Tools, Add-Ins menu to launch erwin Spy.

Note: Ensure that you have added the erwin Spy application as a erwin DM add-in
application on the Tools, Add-Ins menu. See the Add-In Manager online help for more
information on defining an add-in software application.

Select the top item on the Models menu in erwin Spy, which should be your empty
model.

Double-click the Model object in the left pane to expand it. You should see a picture
similar to the following illustration:

There are many objects listed by erwin Spy. Even though the model is empty, you still see
objects there that represent erwin DM defaults, such as Domains, Main Subject Area, Trig-
ger Templates, and so on. All default objects are marked with a { Default; } flag to the right
of the type of the model object.

46

The right pane of erwin Spy displays object properties. To see a specific object's properties,
select the object, click the button located in the center of the screen, and the selected
object's properties display in the right panel. The following illustration shows the properties
of a specific entity that was added to this model:

The first column shows property names, such as Name, Long ID, Type, Physical Name, and
so on.

The second column, DT, shows property datatypes, such as Str for a string, I4 for a number,
Bool for Boolean, Id for a reference to another object, and so on.

The third column, Value, displays the property value in native format.

The fourth column, As String, displays the property value reinterpreted as a string. To under-
stand this better, look at Physical Name in the left column. Its value in the Value column is
 %EntityName(), which is a macro, while As String holds the macro expansion, Entity_1.

47

The rest of the columns in the right pane represent property flags. The following list
describes the meaning of these columns:

NL

Displays properties with NULL/no value.

Note: The flag is never on for erwin Spy.

UD

Displays user-defined properties.

VC

Displays vector properties.

TL

Displays properties that are maintained by erwin DM and that cannot be changed dir-
ectly using the API.

RO

Displays read-only properties.

DR

Displays derived properties whose value was inherited (from a parent domain, for
example).

Facets True

Displays the facet value of a property that is set to True.

Facets False

Displays the facet value of a property that is set to False.

In the previous illustration, a primary key attribute named ATTR01 was added to Entity_1. It
was migrated to Entity_2 by creating an identifying relationship. When you double-click
Entity_2, and then select ATTR01, you can see how erwin Spy displays the information. You
can click the button in the center of the screen to view its properties on the right.

48

Since the attribute for the Parent_Relationship_Ref property is a product of foreign key
migration, this property shows which relationship object is used to store data about it. The
value Id in the DT column shows that the property is a reference, which means that the
value is a unique ID of the involved relationship object.

Look at the name in the As String column or locate an object by its unique ID to traverse
back to the relationship object. To see object IDs, click Show Ids on the File, Options menu.
With this option enabled, when the cursor is positioned over an object in the left panel, that
object's unique ID is displayed in a popup window, as shown in the following illustration:

49

Now compare the Parent_Relationship_Ref property with the Parent_Attribute_Ref and the
Master_Attribute_Ref properties. The Master_Attribute_Ref property is read-only. This
means that it is displayed for informational purposes only and cannot be changed using the
API. As you build your model, you can expand objects in the model to see how erwin DM
uses their properties to represent different relationships in the model.

Use the erwin Spy utility to see and understand the details of the data in a erwin DM model
that is available through the API. If you need to learn how particular data is represented in a
erwin DM model, you can use the scenarios that were just described. Start with an empty
model, create the minimum model that is necessary to represent the feature in question,
and then use erwin Spy to look at the details of the data representation.

50

API Tasks

This chapter describes how to perform basic tasks using the API. Each task is documented
with a table that lists the interfaces and methods needed for that task. In most cases, the
table shows a subset of all the methods for that interface. A complete list of API interfaces
and their methods is located in the appendix API Interfaces Reference.

This section contains the following topics

API Environment
Creating the ISCApplication Object
Application Properties
Accessing a Model
Accessing Objects in a Model
Accessing Object Properties
Modifying the Model Using Session Transactions
Creating Objects
Setting Property Values
Deleting Objects
Deleting Properties and Property Values
Saving the Model
Accessing Metamodel Information
Closing the API
Error Handling
Advanced Tasks

51

API Environment

The API is packaged as a set of COM Dynamic Link Libraries (DLL) and works as a part of a
customer process. EAL.dll is responsible for launching the API environment. When erwin DM
is installed, EAL.dll and the rest of the API components are copied to the erwin Data
Modeler directory, and the installer registers the API with the System Registry.

To use the API in a development environment, use the API Type Library embedded as a
resource in the EAL.dll file. This operation is language specific. Consult your development
environment documentation for details.

The API works in two different modes, standalone mode and add-in mode.

The API is activated and controlled by a client application that hosts its own process in the
standalone mode.

In the add-in mode, the API is also activated and controlled by a client application, but the
client application is implemented as a COM DLL. The erwin DM executable owns a process
and all the client application DLLs run inside of that process. COM DLLs must be registered
with the System Registry and with the erwin DM Add-In Manager so that it can be available
for add-in mode activation.

Behavior of the API components in both modes is the same with a few exceptions that are
discussed further in this section.

The API is implemented as a tree of COM interfaces. The application exports the top-level
interface, from which the client fetches lower-level interfaces as needed.

52

Creating the ISCApplication Object

The entry point into the interface hierarchy of the API is through the ISCApplication inter-
face. The ISCApplication interface provides access to the persistence units and sessions. You
must create an instance of ISCApplication prior to using any of the other interfaces in the
API.

Example 1

The following example illustrates how to use C++ to create the ISCApplication object:

 #import "EAL.dll" using namespace SCAPI;
 ISCApplicationPtr scAppPtr;
 HRESULT hr;
 hr = scAppPtr.CreateInstance(__uuidof(SCAPI::Application));

The following example illustrates how to use Visual Basic .NET to create the ISCApplication
object:

 Dim scApp As SCAPI.Application
 scApp = New SCAPI.Application
 // Or the alternative with the ProgId
 Dim oApp As Object
 oApp = CType(CreateObject("ewin9.SCAPI"), SCAPI.Application)

53

Application Properties

You can get information about the erwin DM application by using the following tables.

54

ISCApplication Interface

The following table contains information on the ISCApplication interface:

Signature Description Valid Argu-
ments

BSTR Name() Modeling Application Title None

BSTR Version() Modeling Application Version None

BSTR ApiVersion() API version None

ISCApplicationEnvironment

ApplicationEnvironment()

Reports attributes of runtime environment and
available features such as add-in mode, user inter-
face visibility, and so on

None

ISCPersistenceUnitCollection
* PersistenceUnits()

Returns a collection of all persistence units loaded
in the application.

None

ISCSessionCollection * Ses-
sions()

Returns a collection of sessions created within the
application

None

55

ISCApplicationEnvironment

The following table contains information on the ISCApplicationEnvironment interface:

Signature Description Valid Arguments

ISCPropertyBag

PropertyBag(VARIANT Category
[optional], VARIANT Name
[optional], VARIANT AsString
[optional])

Populates a property bag with
one or more property values as
indicated by Category and
Name

Category:

Empty Complete set
of features from all cat-
egories returned

VT_BSTR Features
returned from the given
category

Name:

Empty All properties
from the selected cat-
egory are returned

VT_BSTR The prop-
erty with the given
name and category
returned

AsString:

Empty All values in
the property bag are
presented in their nat-
ive type

VT_BOOL If set to
TRUE, all values in the
property bag are presen-
ted as strings

Feature categories in the Category parameter of the PropertyBag property are hierarchical
and use a dot (.) to define feature subsets. For example, the Application category populates

56

a property bag with a complete set of erwin DM features, while Application.API provides a
subset related to the API.

If the Category parameter is not set, then the PropertyBag property returns the complete set
of all the features from all the available categories.

Example 2

The following example illustrates how to use the API to retrieve the Application Features
using C++. It uses the Application object created in Example 1.

 void IteratePersistenceUnits(ISCApplicationPtr & scAppPtr)
 {
 ISCPropertyBagPtr scBag;

 // Retrieve all of application environment properties in one
call
 scBag = scAppPtr ->GetApplicationEnvironment()->GetPropertyBag
();
 // Get an array with categories by using empty string as a cat-
egory name
 scBag = scAppPtr ->GetApplicationEnvironment()->GetPropertyBag
("", "Categories")

 // Get Api Version value Application Api category
 scBag = scAppPtr ->GetApplicationEnvironment()->GetPropertyBag
 ("Application.Api","Api Version")
 }

The following example illustrates how to use the API to retrieve the Application Features
using Visual Basic .NET. It uses the Application object created in Example 1.

 Public Sub GetApplicationFeatures(ByRef scApp As SCAPI.Ap-
plication)
 Dim scBag As SCAPI.PropertyBag
 ' Retrieve all of application environment properties in one
call
 scBag = scApp.ApplicationEnvironment.PropertyBag
 ' Retrieve values
 PrintPropertyBag(scBag)
 ' Get an array with categories by using empty string as a

57

category name
 scBag = scApp.ApplicationEnvironment.PropertyBag("", "Cat-
egories")
 ' Retrieve a list of categories from the bag
 Dim aCategories() As String
 Dim CategoryName As Object
 If IsArray(scBag.Value("Categories")) Then
 ' Retrieve an array
 aCategories = scBag.Value("Categories")
 If aCategories.Length > 0 Then
 ' Retrieve values on category basis
 For Each CategoryName In aCategories
 ' Get a property bag with values for the category
 scBag = scApp.ApplicationEnvironment.PropertyBag(Cat-
egoryName)
 Console.WriteLine(" Values for the " +
CategoryName + " category:")
 ' Retrieve values
 PrintPropertyBag(scBag)
 Next CategoryName
 End If
 End If
 ' Get Api Version value Application Api category
 scBag = scApp.ApplicationEnvironment.PropertyBag("Applic-
ation.Api", "Api Version")
 ' Retrieve values
 PrintPropertyBag(oBag)
 End Sub
 ' Retrieves and prints values from a property bag
 Public Sub PrintPropertyBag(ByRef oBag As SCAPI.PropertyBag)
 Dim Idx As Short
 Dim nIdx1 As Short
 If Not (oBag Is Nothing) Then
 For Idx = 0 To oBag.Count - 1
 If IsArray(oBag.Value(Idx)) Then
 ' Retrieve an array
 If oBag.Value(Idx).Length > 0 Then
 Console.WriteLine(Str(Idx) + ") " + oBag.Name
(Idx) + " is an array: ")

58

 For nIdx1 = 0 To UBound(oBag.Value(Idx))
 Console.WriteLine(" " + oBag.Value(Idx)
(nIdx1).ToString)
 Next nIdx1
 End If
 Else
 ' A single value
 Console.WriteLine(Str(Idx) + ") " + oBag.Name
(Idx) + " = " + oBag.Value(Idx).ToString)
 End If
 Next Idx
 End If
 End Sub

59

Accessing a Model

An API client accesses model data by working with a pool of available persistence units. A
persistence unit is the API concept that describes all data related to a single model. A per-
sistence unit can be accessed and saved to persistence storage, such as a file or a model in a
mart. A client manipulates persistence units by using the Persistence Units collection.

The existence of some persistence units in the application is dictated by a context in which
an instance of the application was created. For example, in standalone mode, none of the
units exist at launch time. Methods from the unit collection interface must be used to accu-
mulate units in the collection. In add-in component mode, the collection contains all the
units known to the erwin DM user interface at the time when the client component is activ-
ated.

When the client program is terminated, the arrangement for the persistence units in
memory for standalone mode is that all units are closed. In add-in component mode, after
the client program has ended, the units are still open and available in the erwin DM user
interface with the exception of those that were explicitly closed and removed from the per-
sistence unit collection before exiting the program.

Note: For erwin DM, the collection is a snapshot. The collection includes only those units
that exist at the moment of collection construction (such as at the moment when the Per-
sistenceUnits method of the ISCApplication interface was called). An exception to this is units
added or deleted from the collection-these changes are reflected. All new collections reflect
the changes as well.

60

Using the API as an Add-in Tool

When the API client is a DLL that is invoked by clicking Add-Ins from the Tools menu, the cli-
ent runs within the environment of erwin DM. As a result, all the models that are currently
open within erwin DM are populated in the PersistenceUnits property of the ISCApplication
interface, when an instance of the interface is created.

To iterate through the models that are currently open in erwin DM, you can use the ISCAp-
plication interface, ISCPersistenceUnitCollection interface, and the ISCPersistenceUnit inter-
face, which are described in the sections that follow.

61

ISCApplication Interface

The following table contains information on the ISCApplication interface:

Signature Description Valid Argu-
ments

ISCPersistenceUnitCollection

PersistenceUnits()

Returns a collection of all persistence units
loaded in the application

None

62

ISCPersistenceUnitCollection Interface

The following table contains information on the ISCPersistenceUnitCollection interface:

Signature Description Valid Arguments

ISCPersistenceUnit

Item(VARIANT nIn-
dex)

Passes back a pointer for
the PersistenceUnit com-
ponent identified by its
ordered position

Index:

VT_UNKNOWN A pointer to a session.
Retrieves the persistence unit associated
with the session.

VT_I4 Index within the collection. Col-
lection index is from 0 to size-1.
Retrieves the persistence unit in the col-
lection with the given index.

VT_BSTR Application-wide unique per-
sistence unit identifier.

long Count() Number of persistence units
in the collection

None

63

ISCPersistenceUnit Interface

The following table contains information on the ISCPersistenceUnit interface:

Signature Description Valid Arguments

BSTR Name() Returns the name of
the persistence unit

None

SC_MODELTYPEID
ObjectId()

Returns an identifier
for the persistence
unit

None

ISCPropertyBag

PropertyBag
(VARIANT List
[optional], VARIANT
AsString[optional])

Returns a property
bag with the prop-
erties of the per-
sistence unit

List:

VT_BSTR Semicolon-separated list of prop-
erty names. Returns a property bag with the
unit properties in the given list.

AsString:

VT_BOOL Returns a property bag with all
values presented as strings if set to TRUE.
Otherwise, the values are presented in its
native format.

VARIANT_BOOL

HasSession()

Returns TRUE if a
unit has one or more
sessions connected

None

VARIANT_BOOL
IsValid()

Returns TRUE is self
is valid

None

64

Property Bag Members for a Persistence Unit

The following table shows some property names and descriptions for property bag members
of an existing persistence unit.

Note: A complete set of available properties is located in the appendix API Interfaces Refer-
ence.

Property
Name

Type Description

Locator BSTR Returns the location of the persistence unit, such as file name.
Not available for models without a persistence location, such
as new models that were never saved.

Disposition BSTR Returns the disposition of the persistence unit, such as read-
only.

Persistence_
Unit_Id

SC_
MODELTYPEID

Retrieves an identifier for the persistence unit.

Model_Type Long Retrieves the type of the persistence unit, such as logical,
logical-physical, and physical models.

Target_
Server
Target_
Server_Ver-
sion
Target_
Server_
Minor_Ver-
sion

Long Retrieves the target database properties for physical and
logical-physical models.

Active_
Model

Boolean TRUE if the persistence unit represents the current model and
is active in the erwin DM user interface. Not available for the
API in standalone mode.

Hidden_
Model

Boolean TRUE if a model window with the persistence unit data is not
visible in the erwin DM user interface. Not available for the
API in standalone mode.

65

Active_Sub-
ject_Area_
and_Stored_
Display

SAFEARRAY
(BSTR)

Reports names of active Subject Area and Stored Display
model objects. This indicates the Subject Area and Stored Dis-
play that erwin DM shows on the screen. The returned value is
a safe-array with two elements. The first element is a name
for the active Subject Area and the second element is for the
Stored Display.

66

ISCPropertyBag Interface

The following table contains information on the ISCPropertyBag interface:

Signature Description Valid Arguments

long Count() Returns the number of properties None

VARIANT
Value
(VARIANT
Property)

Retrieves the indicated property in
the bag

Property:

VT_BSTR Name of property.
Value of the property with the given
name in the property bag.

VT_I4 Zero-based property index.
Value of the property with the given
index in the property bag.

BSTR Name
(long

PropertyIdx)

Retrieves the indicated property
name with the given index. Range of
indices is from 0 to size-1.

None

Example 3

The following example illustrates how to use the API as an add-in tool to iterate through the
open models using C++. The example uses the Application object created in Example 1:

 void IteratePersistenceUnits(ISCApplicationPtr & scAppPtr)
 {
 ISCPersistenceUnitCollectionPtr scPUnitColPtr;
 scPUnitColPtr = scAppPtr->GetPersistenceUnits();

 ISCPersistenceUnitPtr scPUnit = 0;
 long lCnt = scPUnitColPtr->GetCount();

 for(long i = 0; i < lCnt; i++)
 {
 scPUnit = scPUnitColPtr->GetItem(i);
 CString csName = scPUnit->GetName(); // name of model
 ISCPropertyBagPtr scPropBag = scPUnit->GetPropertyBag("Loc-
ator;Active Model");

67

 long index = 0;
 CComVariant vPathName = scPropBag->GetValue(ColeVariant
(index)); // full
 //path of model
 index = 1;
 CComVariant cActiveModel = scPropBag->GetValue(COleVariant
(index)); // true if active model
 // …
 }
 }

The following example illustrates how to use the API as an add-in tool to iterate through the
open models using Visual Basic .NET. The example uses the Application object created in
Example 1:

 Public Sub IteratePersistenceUnits(ByRef scApp As SCAPI.Ap-
plication)

 Dim scPersistenceUnitCol as SCAPI.PersistenceUnits

 Dim numUnits As Integer
 Dim scPUnit As SCAPI.PersistenceUnit

 scPersistenceUnitCol = scApp.PersistenceUnits

 ' Count open units
 numUnits = scPersistenceUnitCol.Count
 If (numUnits > 0) Then
 For Each scPUnit In scPersistenceUnitCol
 Dim propBag As SCAPI.PropertyBag

 propBag = scPUnit.PropertyBag("Locator")
 Console.WriteLine(persUnit.Name) ' name of model
 Console.WriteLine(propBag.Value(0)) ' full path of model
 ' …
 Next
 End If
 End Sub

68

Using the API as a Standalone Executable

When the API client is a standalone executable, the client runs outside the erwin DM envir-
onment. As a result, when the ISCApplication interface is created, the PersistenceUnits prop-
erty is an empty collection. Even if erwin DM is running and there are open models, the
PersistenceUnits property is still empty because the API environment is independent of the
erwin DM environment. To get a valid persistence unit, the API client needs to either create
a new model or open an existing model.

69

Creating a Model

To create a new model using the API, you first need to create a new instance of ISCProp-
ertyBag. The ISCPropertyBag interface is a property bag that is used to hold the properties of
the new model. The following properties are used in creating a new model.

Note: A complete set of properties is located in the appendix API Interfaces Reference.

Property Name Type Description

Model_Type Long Sets the type of the persistence unit as follows:

1 Logical (for logical models; this is the default if no
type is provided)

2 Physical (for physical models)

3 Combined (for logical/physical models)

Target_Server
Target_Server_Version
Target_Server_Minor_
Version

Long Sets the target database properties for physical and logic-
al/physical models.

Once the property bag is created and populated, a new persistence unit must be created
within the persistence unit collection.

70

ISCPersistenceUnitCollection Interface

The following table contains information on the ISCPersistenceUnitCollection interface:

Signature Description Valid Arguments

ISCPersistenceUnit * Create
(ISCPropertyBag * Prop-
ertyBag, VARIANT ObjectId
[optional])

Creates a new unit,
and registers the
unit with the col-
lection

ObjectId:

Empty The API
assigns an ID to the
new persistence
unit.

VT_BSTR The API
assigns the given ID
to the new per-
sistence unit.

71

ISCPropertyBag Interface

The following table contains information on the ISCPropertyBag interface:

Signature Description Valid Arguments

VARIANT_BOOL
Add(BSTR Name,
VARIANT Value)

Adds a new
property to
the bag

Value:

All VARIANTs are valid. The function
returns TRUE if the property was added
to the bag, otherwise, it is FALSE.

Example 4

The following example illustrates how to create a new persistence unit using C++. The
example uses the Application object created in Example 1:

 ISCPersistenceUnitPtr CreateNewModel(ISCApplicationPtr & scAppPtr)
 {
 ISCPersistenceUnitCollectionPtr scPUnitColPtr;
 scPUnitColPtr = scAppPtr->GetPersistenceUnits();

 ISCPropertyBagPtr propBag;
 HRESULT hr =propBag.CreateInstance(__uuidof(SCAPI::Prop-
ertyBag));
 if (FAILED(hr))
 return;
 propBag->Add("Name", Test Model);
 propBag->Add("ModelType", Logical);
 ISCPersistenceUnitPtr scPUnitPtr = scPUnitColPtr->Create
(propBag,vtMissing);
 return scPUnitPtr;
 }

The following example illustrates how to create a new persistence unit using Visual Basic
.NET. The example uses the Application object created in Example 1:

 Public Function CreateNewModel(ByRef scApp As SCAPI.Application)
As SCAPI.PersistenceUnit
 Dim scPersistenceUnitCol as SCAPI.PersistenceUnits
 scPersistenceUnitCol = scApp.PersistenceUnits

72

 Dim propBag As New SCAPI.PropertyBag

 propBag.Add("Name", "Test Model")
 propBag.Add("ModelType", 0)
 CreateNewModel = scPersistenceUnitCol.Create(propBag)
 End Function

73

Opening an Existing Model

An existing erwin DM model is opened by adding a persistence unit to the persistence unit
collection (ISCPersistenceUnitCollection). When the API client is an add-in tool, opening a
model through the API also opens the model in the erwin DM user interface.

74

ISCPersistenceUnitCollection Interface

The following table contains information on the ISCPersistenceUnitCollection interface:

Signature Description Valid Arguments

ISCPersistenceUnit *
Add(VARIANT Locator,
VARIANT Disposition
[optional])

Adds a new per-
sistence unit to
the unit col-
lection

Locator:

VT_BSTR Full path to the
erwin DM model. This is the
model that is loaded into the
persistence unit.

Disposition:

VT_BSTR Arranges access
attributes, such as read-only.

Note: Detailed descriptions of the location and format of the Disposition parameters is loc-
ated in the appendix API Interfaces Reference.

Example 5

The following example illustrates how to open an existing model using C++. The example
uses the Application object created in Example 1:

 ISCPersistenceUnitPtr OpenModel(ISCApplicationPtr & scAppPtr,
CString & csFullPath)
 {
 ISCPersistenceUnitCollectionPtr scPUnitColPtr;
 scPUnitColPtr = scAppPtr->GetPersistenceUnits();
 ISCPersistenceUnitPtr scPUnitPtr = scPUnitColPtr- >Add
(COleVariant(csFullPath));
 return scPUnitPtr;
 }

The following example illustrates how to open an existing model using Visual Basic .NET.
The example uses the Application object created in Example 1:

 Public Function OpenModel(ByRef scApp As SCAPI.Application, _
 fullModelPath As String) As SCAPI.Per-
sistenceUnit

75

 Dim scPersistenceUnitCol as SCAPI.PersistenceUnits
 scPersistenceUnitCol = scApp.PersistenceUnits

 OpenModel = scPersistenceUnitCol.Add(fullModelPath)
 End Sub

76

Opening a Session

Before the objects of a model can be accessed using the API, an ISCSession instance must
first be established for the ISCPersistenceUnit of the model. To open a session for a per-
sistence unit, add a new ISCSession to the ISCSessionCollection, and then open the ISCPer-
sistenceUnit in the new session.

77

ISCSessionCollection Interface

The following table contains information on the ISCSessionCollection interface:

Signature Description Valid Argu-
ments

ISCSession *
Add()

Constructs a new, closed Session object, and
adds it to the collection

None

78

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Arguments

VARIANT_BOOL Open
(IUnknown * Unit, VARIANT
Level [optional], VARIANT Flags
[optional])

Binds self to the per-
sistence unit identified
by the Unit parameter

Unit:

Pointer to a persistence unit that
was loaded. Attaches the per-
sistence unit to the session.

Level:

Empty Defaults to data level
access (SCD_SL_M0).

SCD_SL_M0 Data level access.
Flags:

Empty Defaults to SCD_SF_
NONE.

SCD_SF_NONE Specifies that
other sessions can have access to
the attached persistence unit.

SCD_SF_EXCLUSIVE Specifies
that other sessions cannot have
access to the attached per-
sistence unit.

Example 6

The following example illustrates how to open a session using C++. The example uses the
Application object created in Example 1 and the CreateNewModel function from Example 4:

 ISCSessionPtr OpenSession(ISCApplicationPtr & scAppPtr)
 {
 ISCSessionCollectionPtr scSessionColPtr = scAppPtr->GetSes-
sions();
 ISCSessionPtr scSessionPtr = scSessionColPtr->Add(); // add
a new session

79

 ISCPersistenceUnitPtr scPUnitPtr = CreateNewModel(scAppPtr);
// From Example 4

 CComVariant varResult = scSessionPtr->Open(scPUnitPtr,
(long) SCD_SL_M0); // open unit
 if (varResult.vt == VT_BOOL && varResult.boolVal == FALSE)
 return NULL;
 return scSessionPtr;
 }

The following example illustrates how to open a session using Visual Basic .NET. The
example uses the Application object created in Example 1 and the CreateNewModel func-
tion from Example 4:

 Public Function OpenSession(ByRef scApp As SCAPI.Application) As
SCAPI.Session
 Dim scSessionCol As SCAPI.Sessions
 Dim scPUnit As SCAPI.PersistenceUnit
 scSessionCol = scApp.Sessions
 OpenSession = scSessionCol.Add 'new session

 scPUnit = CreateNewModel(scApp) ' From Example 4
 scSession.Open(scPUnit, SCD_SL_M0) ' open the persistence
unit
 End Sub

80

Accessing a Model Set

A persistence unit contains data as a group of linked model sets. The model sets are
arranged in a tree-like hierarchy with a single model set at the top.

The top model set in a persistence unit contains the bulk of modeling data. The erwin DM
API uses the abbreviation EMX to identify the top model set.

The EMX model set owns a secondary model set, abbreviated as EM2, that contains user
options and user interface settings.

The ISCSession interface allows you to open the top model set by simply providing a pointer
to the ISCPersistenceUnit interface in ISCSession::Open call.

It is possible to iterate over all model sets constituting a persistence unit. While iterating, a
pointer to the ISCModelSet interface can be used to open a session with the particular
model set. This is done by submitting the pointer to ISCSession::Open call as the first para-
meter, instead of a persistence unit.

The ModelSet property of the ISCPersistenceUnit interface provides the starting point for
iteration over a persistence unit's model sets. The use of the OwnedModelSets property of
ISCModelSet allows you to iterate over the next level of model sets in the persistence unit.

81

ISCPersistenceUnit Interface

The following table contains information on the ISCPersistenceUnit interface:

Signature Description Valid Argu-
ments

ISCModelSet *
ModelSet()

Passes back a pointer on the top model set in the Per-
sistence Unit.

None

82

ISCModelSet Interface

The following table contains information on the ISCModelSet interface:

Signature Description Valid Argu-
ments

ISCModelSetCollection *
OwnedModelSets()

Provides a collection with dir-
ectly owned model sets.

None

83

ISCModelSetCollection Interface

The following table contains information on the ISCModelSetCollection interface:

Signature Description Valid Arguments

ISCModelSet * Item
(VARIANT nIndex)

Passes back a pointer for
a ModelSet component.

nIndex:

VT_I4 Index of a model set in the
model set collection. The index is zero-
based.

VT_BSTR Model set identifier.

VT_BSTR Class identifier for metadata
associated with a model set.

VT_BSTR Class name for metadata
associated with a model set.

Note: For information about metadata class identifiers and names, see the HTML document
erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the erwin
Data Modeler installation folder.

84

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Arguments

VARIANT_BOOL Open(IUnknown
* ModelSet, VARIANT Level
[optional], VARIANT Flags
[optional])

Binds self to the
model set identified
by the ModelSet para-
meter

ModelSet:

Pointer to a model set from a
persistence unit that was
loaded. Attaches the model set
to the session.

Level:

Empty Defaults to data level
access (SCD_SL_M0).

SCD_SL_M0 Data level
access.

Flags:

Empty Defaults to SCD_SF_
NONE.

SCD_SF_NONE Other sessions
can have access to the attached
persistence unit.

SCD_SF_EXCLUSIVE Other ses-
sions cannot have access to the
attached persistence unit.

Example 7

The following example illustrates how to open a session with the EM2 model of a per-
sistence unit using C++. The example uses the Application object created in Example 1 and
the CreateNewModel function from Example 4:

 void OpenEM2(ISCApplicationPtr & scAppPtr)
 {
 ISCSessionCollectionPtr scSessionColPtr = scAppPtr->GetSes-
sions();

85

 ISCPersistenceUnitPtr scPUnitPtr = CreateNewModel(scAppPtr);
// From Example 4

 ISCModelSetPtr scEMXModelSetPtr = scPUnitPtr->ModelSet(); //
Collect the top model set
 ISCModelSetPtr scEM2ModelSetPtr = scEMXModelSetPtr-
>GetOwnedModelSets()->GetItem(COleVariant("EM2"));
 if (scEM2ModelPtr != NULL)
 {
 ISCSessionPtr scSessionPtr = scSessionColPtr->Add(); //
add a new session
 CComVariant varResult = scSessionPtr->Open
(scEM2ModelSetPtr);
 if (varResult.vt == VT_BOOL && varResult.boolVal == FALSE)
 return;

 // …
 }

The following example illustrates how to open a session with the EM2 model of a per-
sistence unit using Visual Basic .NET. The example uses the Application object created in
Example 1 and the CreateNewModel function from Example 4:

 Public Sub OpenEM2(ByRef scApp As SCAPI.Application)

 Dim scSession As SCAPI.Session
 Dim scEMXModelSet As SCAPI.ModelSet
 Dim scEM2ModelSet As SCAPI.ModelSet
 Dim scPUnit As SCAPI.PersistenceUnit
 scSessionCol = scApp.Sessions
 scPUnit = CreateNewModel(scApp) ' From Example 4

 ' Access the top model set - of EMX type
 scEMXModelSet = persUnit.ModelSet
 ' Access an owned EM2 model set by class name
 scEM2ModelSet = scEMXModelSet.OwnedModelSets("EM2")
 Console.WriteLine(vbTab + " Access EM2 Model Set by class
name" + scEM2ModelSet.Name + _" Id " + scEM2ModelSet.ModelSetId)
 Console.WriteLine(vbTab + vbTab + " Class Name " +

86

scEM2ModelSet.ClassName + _" Class id " + scEM2ModelSet.ClassId)
 scSession = scSessionCol.Add ' new session
 scSession.Open(scEM2ModelSet, SCD_SL_M0) ' connect EM2 to a
session
 '…
 End Sub

87

Accessing Objects in a Model

You can access model objects through the ModelObjects property in an active ISCSession
instance. The ModelObjects property is a collection of all model objects associated with the
persistence unit of the session. The ModelObjects property is an instance of the ISCModelOb-
jectCollection. Iteration through an instance of ISCModelObjectCollection is done in a depth-
first fashion, and returns instances of ISCModelObject.

The following sections describe the interfaces used to access model objects.

88

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Argu-
ments

ISCModelObjectCollection *
ModelObjects()

Creates a ModelObject col-
lection for the session

None

89

ISCModelObjectCollection Interface

The following table contains information on the ISCModelObjectCollection interface:

Signature Description Valid Argu-
ments

long Count() Number of objects in the collection None

IUnknown _
NewEnum()

Constructs an instance of the collection
enumerator object

None

90

ISCModelObject Interface

The following table contains information on the ISCModelObject interface:

Signature Description Valid Argu-
ments

BSTR ClassName() Returns the class name of the current
object

None

SC_OBJID ObjectId
()

Uniquely identifies the current object None

BSTR Name() Returns the name or a string identifier of
the current object

None

SC_CLSID ClassId() Returns the class identifier of the current
object

None

ISCModelObject *
Context()

Passes back the context (parent) of the
object

None

Example 8

The following example illustrates how to access model objects using C++. The example uses
the Application object created in Example 1 and the OpenSession function from Example 6:

 void IterateObjects(ISCApplicationPtr & scAppPtr)
 {
 ISCSessionPtr scSessionPtr = OpenSession(scAppPtr); //
From Example 6
 //Make sure the Session Ptr is Open
 if(!scSessionPtr->IsOpen())
 {
 AfxMessageBox("Session Not Opened");
 return;
 }
 ISCModelObjectCollectionPtr scModelObjColPtr = scSessionPtr
>GetModelObjects();
 IUnknownPtr _NewEnum = NULL;
 IEnumVARIANT* ObjCollection;

91

 _NewEnum = scModelObjColPtr ->Get_NewEnum();
 if (_NewEnum != NULL)
 {
 HRESULT hr = _NewEnum->QueryInterface(IID_IEnumVARIANT,
(LPVOID*) &ObjCollection);
 if (!FAILED(hr))
 {
 while (S_OK == ObjCollection->Next(1,&xObject,NULL))
 {
 ISCModelObjectPtr pxItem = (V_DISPATCH (&xObject));
 // ISCModelObject in xObject was AddRefed already.
All we need is to
 //attach it to a smart pointer
 xObject.Clear();
 // Process the Item
 CString csName = (LPSTR) pxItem->GetName();
 CString csID = (LPSTR) pxItem->GetObjectId();
 CString csType = (LPSTR) pxItem->GetClassName();
 // …
 }
 if (ObjCollection)
 ObjCollection->Release();
 }
 }

The following example illustrates how to access model objects using Visual Basic .NET. The
example uses the Application object created in Example 1 and the OpenSession function
from Example 6:

 Public Sub IterateObjects(ByRef scApp As SCAPI.Application)
 Dim scSession As SCAPI.scSession
 Dim scModelObjects As SCAPI.ModelObjects
 Dim scObj As SCAPI.ModelObject

 scSession = OpenSession(scApp) ' From Example 6
 ' Make sure that the session is open
 If scSession.IsOpen() Them
 scModelObjects = scSession.ModelObjects

92

 For Each scObj In scModelObjects
 Console.WriteLine(scObj.Name)
 Console.WriteLine(scObj.ObjectId)
 Dubug.WriteLine(scObj.ClassName)
 Next
 End If
 End Sub

93

Accessing a Specific Object

You can directly access model objects in an ISCModelObjectCollection instance by using the
Item method of the interface.

94

ISCModelObjectCollection Interface

The following table contains information on the ISCModelObjectCollection interface:

Signature Description Valid Arguments

ISCModelObject
* Item(VARIANT
nIndex, VARIANT
Class [optional])

Returns an IUnknown
pointer for a Model
Object component iden-
tified by the nIndex para-
meter

nIndex:

VT_UNKNOWN Pointer to the ISCModelOb-
ject interface. Given object is returned from
the collection.

VT_BSTR ID of an object. The object with
the given identifier is returned from the col-
lection.

VT_BSTR Name of an object. If the name of
an object is used, the Class parameter must
also be used. The object with the given name
and given Class type is returned from the col-
lection.

Class:

Empty The object specified by nIndex is
returned from the collection.

VT_BSTR Name of a class. Must be used if
the nIndex parameter is the name of an
object. Returns the object with the given
name and given Class.

VT_BSTR Class ID of object type. Must be
used if the nIndex parameter is the name of
an object. Returns the object with the given
name and given Class identifier.

Note: For information about valid object class names and identifiers, see the HTML doc-
ument erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the
erwin Data Modeler installation folder.

Example 9

95

The following example illustrates how to access a specific object using C++. The example
uses a Session object from Example 6:

 void GetObject(ISCSessionPtr & scSessionPtr, CString & csID)
 {
 ISCModelObjectCollectionPtr scModelObjColPtr = scSessionPtr-
>GetModelObjects();
 ISCModelObjectPtr scObjPtr = scModelObjColPtr->GetItem
(COleVariant(csID));
 // …
 }

The following example illustrates how to access a specific object using Visual Basic .NET.
The example uses a Session object from Example 6:

 Public Sub GetObject(ByRef scSession As SCAPI.Session, ByRef objID
As String)
 Dim scObjCol as SCAPI.ModelObjects
 Dim scObj as SCAPI.ModelObject

 scObjCol = scSession.ModelObjects
 scObj = scObjCol.Item(objID) ' retrieves object with given
object ID
 End Sub

96

Filtering Object Collections

You can create subsets of a collection by using ISCModelObjectCollection::Collect method.
The Collect method creates a new instance of the Model Objects collection component
based on the filtering criteria specified in the parameters of the method. The filtering cri-
teria is optional, and any number of combinations of criteria can be used.

97

ISCModelObjectCollection Interface

The following table contains information on the ISCModelObjectCollection interface:

Signature Description Valid Arguments

ISCModelObjectCollection * Collect
(VARIANT Root, VARIANT ClassId
[optional], VARIANT Depth [optional],
VARIANT MustBeOn [optional],
VARIANT MustBeOff [optional])

Creates a Model
Objects col-
lection, which rep-
resents a
subcollection of
itself.

The method cre-
ates a valid col-
lection even
though the col-
lection may be
empty.

Root:

VT_UNKNOWN ISCModelOb-
ject pointer of the root object.
Returns the descendants of
the given object.

VT_BSTR The Object ID of
the root object. Returns the
descendants of the object with
the given object identifier.

ClassId:

VT_ARRAY|VT_BSTR
SAFEARRAY of class IDs.
Returns the descendants of
the root with the given object
class identifiers.

VT_ARRAY|VT_BSTR
SAFEARRAY of class names.
Returns the descendants of
the root with the given object
class name.

VT_BSTR Class ID. Returns
the descendants of the root
with the given object class
identifier.

VT_BSTR Semicolon delim-
ited list of class IDs. Returns
the descendants of the root
with the given class iden-

98

tifiers.

VT_BSTR Class name.
Returns the descendants of
the root with the given class
name.

VT_BSTR Semicolon delim-
ited list of class names.
Returns the descendants of
the root with the given class
names.

Empty Returns all des-
cendants regardless of class
type.

Depth:

VT_I4 Maximum depth.
Returns the descendants of
the root at a depth no more
than the given depth. A depth
of -1 represents unlimited
depth.

Empty Returns all des-
cendants of the root (unlim-
ited depth).

MustBeOn:

VT_I4 Returns the des-
cendants of the root with the
given object flags set.

Empty Defaults to SCD_
MOF_DONT_CARE.

MustBeOff:

VT_I4 Returns the des-
cendants of the root that do

99

not have the given object flags
set.

Empty Defaults to SCD_
MOF_DONT_CARE.

Note: For information about valid object class names and identifiers, see the HTML doc-
ument erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the
erwin Data Modeler installation folder. More information about SC_ModelObjectFlags is loc-
ated in the appendix API Interfaces Reference.

The following sections show the code examples for the different filters.

Example 10

The following example illustrates the Object Type filter using C++. The example uses the Ses-
sion object from Example 6 and creates a collection of objects of csType type, owned by the
rootObj object:

 void FilterObjects(ISCSessionPtr scSessionPtr, ISCModelObjectPtr &
rootObj,
 CString & csType)
 {
 ISCModelObjectCollectionPtr scModelObjectsPtr;
 scModelObjectsPtr = scSessionPtr->GetModelObjects()->Collect
(rootObj->GetObjectId(), COleVariant(csType));
 // …
 }

The following example illustrates the Object Type filter using Visual Basic .NET. The
example uses the Session object from Example 6 and creates a collection of objects of
csType type, owned by the rootObj object:

 Public Sub FilterObjects(ByRef scSession As SCAPI.Session, _
 ByRef rootObj As SCAPI.ModelObject, ByRef
objType as String)

 Dim scModelObjects As SCAPI.ModelObjects
 scModelObjects = scSession.ModelObject.Collect(rootObj,
objType)

100

 ' scModelObjects will contain only objects of type objType
 End Sub

Example 11

The following example illustrates the Depth filter using C++:

 void FilterObjects(ISCSessionPtr scSessionPtr, ISCModelObjectPtr &
rootObj,
 CString & csType, long depth)
 {
 ISCModelObjectCollectionPtr scModelObjectsPtr;
 scModelObjectsPtr = scSessionPtr->GetModelObject()->
 Collect(rootObj->GetObjectId(), COleVariant
(csType),depth);
 // …
 }

The following example illustrates the Depth filter using Visual Basic .NET:

 Public Sub FilterObjects(ByRef scSession As SCAPI.Session, _
 ByRef rootObj As SCAPI.ModelObject, ByRef classID As
String, depth As Integer)
 Dim scModelObjects As SCAPI.ModelObjects
 scModelObjects = scSession.ModelObjects.Collect(rootObj,
classID, depth)
 End Sub

Example 12

The following example illustrates the MustBeOn/MustBeOff filter using C++. The example
uses the Session object from Example 6:

 void FilterObjects(ISCSessionPtr scSessionPtr, ISCModelObjectPtr &
rootObj, long depth)
 {
 ISCModelObjectCollectionPtr scModelObjectsPtr;
 scModelObjectsPtr = scSessionPtr->GetModelObjects()->
 Collect(rootObj->GetObjectId(), vtMissing, depth, SCD_
MOF_USER_DEFINED);
 // …
 }

101

The following example illustrates the MustBeOn/MustBeOff filter using Visual Basic .NET.
The example uses the Session object from Example 6:

 Public Sub FilterObjects(ByRef scSession As SCAPI.Session, _
 ByRef rootObj As SCAPI.ModelObject, depth As Integer)

 Dim scModelObjects As SCAPI.ModelObjects
 scModelObjects = scSession.ModelObjects.Collect(rootObj, ,
depth, SCD_MOF_USER_DEFINED)
 End Sub

The following example illustrates how to create a note through API:

 Sub updateAttribute()

 ' This Creates an Instance of SCApplication

 Set SCApp = CreateObject("erwin9.SCAPI")

 'Declare a variable as a FileDialog object.

 Dim fd As FileDialog

 'Create a FileDialog object as a File Picker dialog box.

 Set fd = Application.FileDialog(msoFileDialogFilePicker)

 fd.AllowMultiSelect = False

 fd.Filters.Clear

 fd.Filters.Add "erwin File", "*.erwin", 1

 If (fd.Show = -1) Then

 strFileName = fd.SelectedItems.Item(1)

 Else

 Exit Sub

 End If

102

 'Set the object variable to Nothing.

 Set fd = Nothing

 'strFileName = "C:\models\test03.erwin"

 ' This is the name of the .erwin Model that needs to be
updated

 Set SCPUnit = SCApp.PersistenceUnits.Add("erwin://" &
strFileName)

 Set SCSession = SCApp.Sessions.Add

 SCSession.Open (SCPUnit)

 Set SCRootObj = SCSession.ModelObjects.Root

 Set SCEntObjCol = SCSession.ModelObjects.Collect(SCRootObj,
"Entity")

 Dim nTransId

 nTransId = SCSession.BeginNamedTransaction("Test")

 For Each oEntObject In SCEntObjCol

 On Error Resume Next

 Set oEntCol = SCSession.ModelObjects.Collect(oEntObject,
"Attribute")

 For Each oAttObject In oEntCol

 Set oUserNote = SCSession.ModelObjects.Collect(oAt-
tObject).Add("Extended_Notes")

 oUserNote.Properties("Comment").Value = "Test note1"

 oUserNote.Properties("Note_Importance").Value = "0"
 'enum {0|1|2|3|4|5}

 oUserNote.Properties("Status").Value = "1"
 'enum {1|2|3}

103

 Next oAttObject

 Next oEntObject

 SCSession.CommitTransaction (nTransId)

 SCSession.Close

 ' Save the model

 Call SCPUnit.Save("erwin://" & strFileName)

 MsgBox "Incremental-Save successfully"

 SCApp.Sessions.Remove (SCSession)

 SCApp.PersistenceUnits.Clear

 SCPUnit = Null

 SCSession = Null

 End Sub

104

Accessing Object Properties

You can access the properties of an object through the Properties property of ISCModelOb-
ject. The Properties property is an instance of ISCModelPropertyCollection. The
ISCModelPropertyCollection contains instances of ISCModelProperty.

105

Iteration of Properties

This section describes the interfaces involved with the iteration of properties.

106

ISCModelObject Interface

The following table contains information on the ISCModelObject interface:

Signature Description Valid Argu-
ments

ISCModelPropertyCollection *
Properties()

Returns a property collection of all
available properties

None

107

ISCModelPropertyCollection Interface

The following table contains information on the ISCModelPropertyCollection interface:

Signature Description Valid Argu-
ments

Long Count() Number of properties in the collection None

IUnknown _
NewEnum()

Constructs an instance of the collection
enumerator object

None

108

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature Description Valid Argu-
ments

BSTR ClassName() Returns the class name of the prop-
erty

None

SC_CLSID ClassId() Returns the class identifier of the prop-
erty

None

Long Count() Contains the number of values in the
property

None

BSTR
FormatAsString()

Formats the property value as a string None

Example 13

The following example illustrates the iteration of properties using C++. The example uses a
Model Object object from Example 9:

 void IterateObjectProperties(ISCModelObjectPtr & scObjPtr)
 {
 ISCModelPropertyCollectionPtr propColPtr = scObjPtr->GetProp-
erties();

 // Iterate over the Collection
 IUnknownPtr _NewEnum = NULL;
 IEnumVARIANT* propCollection;

 _NewEnum = propColPtr->Get_NewEnum();
 if (_NewEnum != NULL)
 {
 HRESULT hr = _NewEnum->QueryInterface(IID_IEnumVARIANT,
(LPVOID*) &propCollection);
 if (!FAILED(hr))
 {
 COleVariant xObject;

109

 while (S_OK == propCollection->Next(1,&xObject,NULL))
 {
 ISCModelPropertyPtr scObjPropPtr = (V_DISPATCH (&xOb-
ject));
 xObject.Clear();
 if (scObjPropPtr.GetInterfacePtr())
 {
 CString csPropName = (LPSTR) scObjPropPtr-
>GetClassName();
 CString csPropVal= (LPSTR) scObjPropPtr-
>FormatAsString();
 // …
 }
 } // property iteration
 }
 if (propCollection)
 propCollection->Release();
 }
 }

The following example illustrates the iteration of properties using Visual Basic .NET. The
example uses a Model Object object from Example 9:

 Public Sub IterateObjectProperties(ByRef scObj As SCAPI.ModelOb-
ject)

 Dim scObjProperties As SCAPI.ModelProperties
 Dim scObjProp As SCAPI.ModelProperty
 scObjProperties = scObj.Properties
 For Each scObjProp In scObjProperties
 Debug.WriteLine(scObjProp.ClassName)
 Console.WriteLine(scObjProp.Name)
 Next
 End Sub

110

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature Description Valid Arguments

long Count() Contains the number of val-
ues in the property.

For scalar properties, the
number of values in the
property is always one.

It is possible to have a non-
scalar property with no ele-
ments. In this case, the num-
ber of values in the
property will be zero.

None

SC_ModelProp-
ertyFlags Flags()

Returns the flags of the
property.

None

VARIANT Value
(VARIANT ValueId
[optional], VARIANT
ValueType [optional])

Retrieves the indicated
property value in the
requested format.

ValueId:

Empty Valid for a
scalar property only.

VT_I4 Zero-based
index within a homo-
geneous array. The
value of the member
indicated by this index
is returned.

ValueType:

Empty Indicates a nat-
ive datatype for a
return value.

SCVT_DEFAULT Indic-
ates a native datatype

111

for a returned value.

SCVT_BSTR Requests
conversion to a string
for a returned value.

Note: More information about SC_ModelPropertyFlags is located in the Enumerations sec-
tion. More information about property datatypes is located in the SC_ValueTypes section.

Example 14

The following example illustrates how to access scalar property values using C++. The
example uses a Model Property object from Example 13:

 void GetScalarProperty(ISCModelPropertyPtr & scObjPropPtr)
 {
 if (scObjPropPtr->GetCount() <= 1)
 {
 _bstr_t bstrPropVal= scObjPropPtr->FormatAsString();
 // …
 }
 }

The following example illustrates how to access scalar property values using Visual Basic
.NET. The example uses a Model Property object from Example 13:

 Public Sub GetPropertyElement(ByRef scObjProp As SCAPI.ModelProp-
erty)

 If (scObjProp.Flags And SCAPI.SC_ModelPropertyFlags.SCD_MPF_
NULL) Then
 Console.WriteLine("The value is Null")
 Else
 If (scObjProp.Flags And SCAPI.SC_ModelPropertyFlags.SCD_
MPF_SCALAR) Then
 Console.WriteLine(scObjProp.Value.ToString())
 Else
 For j = 0 To scObjProp.Count-1
 Console.WriteLine(scObjProp.Value(j).ToString())
 Next
 End If

112

 End If
 End Sub

113

Iterating Over Non-Scalar Property Values

The properties that contain multiple values (either homogeneous or heterogeneous) are
non-scalar properties. To access the individual values of a non-scalar property, the Prop-
ertyValues member of the ISCModelProperty interface is used. The PropertyValues member
is an instance of ISCPropertyValueCollection. Each member of ISCPropertyValueCollection is
an instance of ISCPropertyValue. The ValueId member of the ISCPropertyValue interface iden-
tifies the individual property values in a non-scalar property. ValueId can either be a zero-
based index or the name of the non-scalar property value member if the property type is a
structure.

114

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature Description Valid Argu-
ments

ISCPropertyValueCollection *
PropertyValues()

Returns the values for
the property

None

115

ISCPropertyValueCollection Interface

The following table contains information on the ISCPropertyValueCollection interface:

Signature Description Valid Argu-
ments

long Count() Number of values in the collection None

IUnknown _
NewEnum()

Constructs an instance of the collection
enumerator object

None

116

ISCPropertyValue Interface

The following table contains information on the ISCPropertyValue interface:

Signature Description Valid Arguments

VARIANT ValueId(VARIANT
ValueType [optional])

Uniquely identifies
the value in a non-
scalar property.

ValueType:

SCVT_I2 If the prop-
erty is non-scalar, the
value of the property
index is returned.

SCVT_I4 If the prop-
erty is non-scalar, the
value of the property
index is returned.

SCVT_BSTR The
name of the non-scalar
property member if it is
available, or else the
index of the member is
returned.

SCVT_DEFAULT If the
property is non-scalar,
the value of the prop-
erty index is returned.

Empty Defaults to
SCVT_DEFAULT.

SC_CLSID PropertyClassId
()

Returns the class iden-
tifier of the current
property

None

BSTR PropertyClassName() Returns the class
name of the current
property

None

VARIANT Value(VARIANT Converts the current ValueType:

117

ValueType [optional]) value to the passed
value type.

SCVT_DEFAULT Indic-
ates a value in the nat-
ive format.

SCVT_BSTR String rep-
resentation of the prop-
erty value.

Target Type Identifies
a target for a type con-
version.

Empty Defaults to
SCVT_DEFAULT.

SC_ValueTypes ValueType
()

Passes back the iden-
tifier of the value
default type

None

SC_ValueTypes
ValueIdType()

Passes back the iden-
tifier of the value
identifier default type

None

SC_ValueTypes * GetSup-
portedValueTypes()

Groups a list of sup-
ported value types
and returns it as a
SAFEARRAY

None

SC_ValueTypes * GetSup-
portedValueIdTypes()

Groups a list of sup-
ported value types
for the current value
identifier and returns
it as a SAFEARRAY

None

Note: More information about value datatypes is located in the SC_ValueTypes section.

Example 15

The following example illustrates how to access non-scalar property values using C++. The
example uses a Model Property object from Example 13:

118

 void IterateNonScalarProperties(ISCModelPropertyPtr & scOb-
jPropPtr)
 {
 if (scObjPropPtr->GetCount() > 1)
 {
 ISCPropertyValueCollectionPtr propVals = scObjPropPtr-
>GetPropertyValues();
 long numVals = propVals->GetCount();
 for (long i = 0; i < numVals; i++)
 {
 ISCPropertyValuePtr propValPtr = propVals->GetItem
(COleVariant(i));
 VARIANT valType;
 V_VT(&valType) = VT_I4;
 V_I4(&valType) = SCVT_BSTR;
 bstr_t bstrPropVal = propValPtr->GetValue(valType);
 // …
 }
 }
 }

The following example illustrates how to access non-scalar property values using Visual
Basic .NET. The example uses a Model Property object from Example 13:

 Public Sub IterateNonScalarProperties(ByRef scObjProp As
SCAPI.ModelProperty)
 Dim scPropValue as SCAPI.PropertyValue

 If (scObjProp.Count > 1) Then
 For Each scPropValue In scObjProp.PropertyValues
 If (scPropValue.ValueIdType = SCVT_BSTR) Then
 Console.WriteLine(scPropValue.ValueId(SCVT_BSTR),": ",
_
 scPropValue.Value.ToString())
 Else
 Console.WriteLine (scPropValue.Value.ToString())
 End If
 Next
 End If
 End Sub

119

120

Accessing a Specific Property

For non-scalar properties, you can directly access individual values by using the Item
method of ISCPropertyValueCollection.

121

ISCPropertyValueCollection Interface

The following table contains information on the ISCPropertyValueCollection interface:

Signature Description Valid Arguments

ISCPropertyValue *
Item(VARIANT
ValueId)

Returns a single value
from the property value
collection

ValueId:

VT_I4 Index of the
member in a non-
scalar property.

VT_BSTR Name of a
member in a non-
scalar property.

Note: For r7.3, erwin DM does not support naming of non-scalar property members.

Example 16

The following example illustrates how to access a specific property using C++. The example
uses a Model Object object from Example 9:

 // This function retrieves a specific value with the given index
from the property with the
 // given name.
 ISCPropertyValuePtr GetPropValue(ISCModelObjectPtr & scObjPtr,
CString & csName, int index)
 {
 ISCModelPropertyCollectionPtr propColPtr = scObjPtr->GetProp-
erties();
 ISCModelPropertyPtr scObjPropPtr = propColPtr->GetItem
(COleVariant(csName));
 ISCPropertyValueCollectionPtr propVals = scObjPropPtr-
>GetPropertyValues();
 return propVals->GetItem(COleVariant(index));
 }

The following example illustrates how to access a specific property using Visual Basic .NET.
The example uses a Model Object object from Example 9:

122

 ' This function retrieves a specific value with the given index
from the property with the
 ' given name.
 Public Function GetPropValue(ByRef scObj As SCAPI.ModelObject,
ByRef propName As String, _index As Integer) As SCAPI.Prop-
ertyValue
 Dim scProp as SCAPI.ModelProperty
 Set scProp = scObj.Properties.Item(propName)
 Set GetPropValue = scProp.PropertyValues.Item(index)
 End Function

123

Filtering Properties

Subsets of an instance of ISCModelPropertyCollection can be created by using its Col-
lectProperties method of ISCModelObject. The CollectProperties method creates a new
instance of ISCModelPropertyCollection based on the filtering criteria specified in the para-
meters of the method. By filtering the property collection, you can retrieve properties of a
certain class, properties with specified flags set, or properties that do not have specified
flags set. The filtering criteria is optional, and any number of combinations of criteria can
be used. More information about specific property flags is located in the Enumerations sec-
tion.

Note: For more information about identifiers used in property classes, see the HTML doc-
ument erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the
erwin Data Modeler installation folder.

124

ISCModelObject Interface

The following table contains information on the ISCModelObject interface:

Signature Description Valid Arguments

ISCModelPropertyCollection * Col-
lectProperties(VARIANT ClassIds
[optional], VARIANT MustBeOn
[optional], VARIANT MustBeOff
[optional])

Returns a prop-
erty collection
of the type that
you require

ClassIds:

Empty All properties of the
object are returned.

VT_ARRAY|VT_BSTR
SAFEARRAY of property class
IDs. Returns the properties with
the given property class iden-
tifiers.

VT_ARRAY|VT_BSTR
SAFEARRAY of property names.
Returns the properties with the
given class names.

VT_BSTR ID of a property
class. Returns the property with
the given property class iden-
tifier.

VT_BSTR Name of a property.
Returns the property with the
given class name.

VT_BSTR List of property
class IDs delimited by semi-
colons. Returns the properties
with the given property class
identifiers.

VT_BSTR List of property
names delimited by semicolons.
Returns the properties with the
given class names.

125

MustBeOn:

Empty Defaults to SCD_MPF_
DONT_CARE and returns all
properties.

VT_I4 SC_ModelObjectFlags
flags that must be on. Returns
the properties with the spe-
cified flags set.

MustBeOff:

Empty Defaults to SCD_MPF_
NULL and returns all properties.

VT_I4 SC_ModelObjectFlags
flags that must be off. Returns
the properties that do not have
the specified flags set.

Note: Setting certain filter criteria can influence the effectiveness of data retrieving. For
example, setting the MustBeOn filter to SCD_MPF_DERIVED builds a collection with only the
calculated and derived properties. Requests to evaluate the calculated and derived prop-
erties will reduce performance while iterating over the collection. However, setting the
MustBeOff filter to the same value, SCD_MPF_DERIVED, which excludes the calculated and
derived properties, improves performance.

Example 17

The following example illustrates how to filter properties using C++. The example uses a
Model Object object from Example 9:

 void GetProperties(ISCModelObjectPtr & scObjPtr)
 {

 ISCModelPropertyCollectionPtr propColPtr;

 propColPtr = scObjPtr->GetProperties(); // no filtering

126

 VARIANT valFlags;
 V_VT(&valFlags) = VT_I4;
 V_I4(&valFlags) = SCD_MPF_SCALAR;

 propColPtr = scObjPtr->CollectProperties(vtMissing, valFlags,
vtMissing); // scalar properties only
 propColPtr = scObjPtr->CollectProperties(vtMissing, vtMissing,
valType); // non-scalar properties only
 }

The following example illustrates how to filter properties using Visual Basic .NET. The
example uses a Model Object object from Example 9:

 Public Sub(ByRef scObj As SCAPI.ModelObject)
 Dim scObjProperties As SCAPI.ModelProperties

 scObjProperties = scObj.Properties ' no filtering

 scObjProperties = scObj.CollectProperties(, SCD_MPF_SCALAR) '
scalar properties only

 scObjProperties = scObj.CollectProperties(, , SCD_MPF_SCALAR)
' non-scalar properties only
 End Sub

127

Modifying the Model Using Session Transactions

In order to make modifications to a model, session transactions must be used. Prior to mak-
ing a modification, either BeginTransaction() or BeginNamedTransaction() must be called.
Once all the modifications are completed, CommitTransaction() must be called.

Note: Nested transactions and rollbacks are supported with certain limitations. The lim-
itation is illustrated in the following state diagram:

After the beginning of an outer transaction, the API is in State I of the diagram. A new nes-
ted transaction can be opened or the outer transaction can be closed. Any operation other
than the open or close of a transaction, such as creating, modifying objects, properties, and
so on, will transfer the API to State II. In that state further modifications can continue, but no
new nested transactions are allowed. The API continues to be in that state until the current
transaction is committed or rolled back.

Use of nested transactions allows better control over modification flow. The following
examples describe the uses:

Commit Transaction

Carries out enlisted modifications immediately. Therefore, without closing the outer

128

transaction, the small nested transactions can reflect separate steps of the complex
changes with the results of the committed transaction instantly available for the con-
sumption by the next step.

Rollback

Cancels out the results of all nested transactions. This includes transactions that were
committed before the outer transaction rollback.

129

Begin Transaction

To indicate that a modification to the model is about to occur, either the BeginTransaction()
or the BeginNamedTransaction() must be called.

130

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Arguments

VARIANT BeginTransaction() Opens a transaction on the
session. Returns an iden-
tifier of the transaction.

None

VARIANT BeginNamedTrans-
action(BSTR Name, VARIANT
PropertyBag [optional])

Opens a transaction on the
session with the given
name. Returns an identifier
of the transaction.

Name Provides a
name for a new
transaction.

PropertyBag Col-
lection of optional
parameters for the
transaction.

Example 18

The following example illustrates modifying the model using the Begin Transaction in C++.
The example uses a Session object from Example 6:

 void OpenSession(ISCSessionPtr & scSessionPtr)
 {
 variant_t transactionId; // transaction ID for the session

 VariantInit(&transactionId);
 transactionId = scSessionPtr->BeginTransaction();

 // …
 }

The following example illustrates modifying the model using the Begin Transaction in Visual
Basic .NET. The example uses a Session object from Example 6:

 Public Sub OpenSession(ByRef scSession As SCAPI.Session)
 Dim m_scTransactionId As Variant

 scTransactionId = scSession.BeginNamedTransaction("My

131

Transaction")
 End Sub

132

Commit Transaction

The CommitTransaction() is used to commit the modifications to the in-memory model.

Note: The Commit only applies to the in-memory model while the API is running. To persist
the modifications, the model must be explicitly saved using the ISCPersistenceUnit::Save()
function.

133

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Argu-
ments

VARIANT_BOOL CommitTransaction
(VARIANT TransactionId)

Commits the spe-
cified transaction

None

Example 19

The following example illustrates modifying the model using the Commit Transaction in C++.
The example uses a Session object from Example 6:

 void Transaction(ISCSessionPtr & scSessionPtr)
 {
 variant_t transactionId; // transaction ID for the session

 VariantInit(&transactionId);
 transactionId = scSessionPtr->BeginTransaction();

 // Make modifications to the model here ….

 scSessionPtr->CommitTransaction(transactionId);
 }

The following example illustrates modifying the model using the Commit Transaction in
Visual Basic .NET. The example uses a Session object from Example 6:

 Public Sub Transaction(ByRef scSession As SCAPI.Session)
 Dim scTransactionId As Variant
 scTransactionId = scSession.BeginTransaction
 ' make modifications here …
 scSession.CommitTransaction(scTransactionId)
 End Sub

134

Creating Objects

The first step in creating a new object is to retrieve the ISCModelObject instance of the par-
ent of the new object. From the parent of the new object, retrieve its child objects in an
instance of ISCModelObjectCollection. Then, add the new object to the child objects col-
lection.

Note: For information about valid object class names and identifiers, see the HTML doc-
ument erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the
erwin Data Modeler installation folder.

135

ISCModelObjectCollection Interface

The following table contains information on the ISCModelObjectCollection interface, which
is used when you create a new model object:

Signature Description Valid Arguments

ISCModelObjectCollection * Collect
(VARIANT Root, VARIANT ClassId
[optional], VARIANT Depth [optional],
VARIANT MustBeOn [optional], VARIANT
MustBeOff[optional])

Creates a Model
Objects collection,
which represents a
subcollection of
itself

Root:

VT_UNKNOWN The
ISCModelObject pointer
of the root object.
Returns the descendants
of the given object.

VT_BSTR The ID of the
root object. Returns the
descendants of the
object with the given
object identifier.

ClassId:

Empty Not needed
when obtaining the chil-
dren of an object.

Depth:

VT_I4 Set depth to 1
when obtaining the
immediate children of an
object.

MustBeOn:

Empty Not needed
when obtaining the chil-
dren of an object.

MustBeOff:

Empty Not needed

136

when obtaining the chil-
dren of an object.

ISCModelObject * Add(VARIANT Class,
VARIANT ObjectId [optional])

Adds an object of
type Class to the
model

Class:

VT_BSTR Name of a
class. Creates an object
of the given class name.

VT_BSTR Class ID of an
object type. Creates an
object of the class with
the given identifier.

ObjectId:

Empty The API assigns
an object identifier for a
new object.

VT_BSTR ID for a new
object. The API assigns
the given object iden-
tifier to the new object.

Example 20

The following example illustrates how to create objects using C++. The example uses a Ses-
sion object from Example 6:

 // NOTE: ISCSession::BeginTransaction() must be called prior to
calling this
 // function
 // ISCSession::CommitTransaction() must be called upon returning
from this
 // function
 void CreateObject(ISCSessionPtr & scSessionPtr, CString & csType,
 ISCModelOb-
jectPtr & parentObj)
 {
 variant_t transactionId; // transaction ID for the session
 VariantInit(&transactionId);

137

 transactionId = scSessionPtr->BeginTransaction();
 ISCModelObjectCollectionPtr childObjColPtr = scSessionPtr-
>GetModelObject()->Collect(parentObj->GetObjectId(),vtMissing,
(long)1); // get
 // child objects
 // Add child object to collection
 ISCModelObjectPtr childObjPtr = childObjColPtr->Add(COleVari-
ant(csType));
 // …
 scSessionPtr->CommitTransaction(transactionId);
 }

The following example illustrates how to create objects using Visual Basic .NET. The
example uses a Session object from Example 6:

 Public Sub AddNewObject(ByRef scSession As SCAPI.Session, _
 ByRef parentObj As SCAPI.ModelObject, type As String)
 Dim scObj as SCAPI.ModelObject
 Dim scChildObjCol As SCAPI.ModelObjects
 Dim transactionID as Variant

 transactionID = scSession.BeginTransaction
 scChildObjCol = scSession.ModelObjects.Collect(parentObj, , 1)
 ' child objects collection
 scObj = scChildObjCol.Add(type) ' add new object to the
child object collection

 scSession.CommitTransaction(transactionID)
 End Sub

138

Setting Property Values

To set a property value of a model object, use the Value member of an instance of the
ISCModelProperty interface.

139

Setting Scalar Property Values

The valid VARIANT types that can be used to set a scalar property value is dependent on the
type of the property.

Note: For more information, see the HTML document erwin Metamodel Reference, in the
Metamodel Reference Bookshelf located in the erwin Data Modeler installation folder.

140

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature Description Valid Arguments

void Value(VARIANT ValueId [optional],
VARIANT ValueType [optional], VARIANT
Val)

Sets the indicated prop-
erty value with the given
value

ValueId:

Empty Not used
when setting scalar
properties.

ValueType:

Empty Not used.
Val:

Dependent upon the
property type.

Note: For information about valid property values, see the HTML document erwin
Metamodel Reference, in the Metamodel Reference Bookshelf located in the erwin Data
Modeler installation folder.

Example 21

The following example illustrates how to set scalar property values using C++. The example
uses a Model Object object from Example 9 and assumes that a transaction has opened:

 // NOTE: ISCSession::BeginTransaction() must be called prior to
calling this
 // function
 // ISCSession::CommitTransaction() must be called upon returning
from this
 // function
 void SetNameProperty(ISCModelObjectPtr & scObjPtr, CString &
csName)
 {
 ISCModelPropertyCollectionPtr propColPtr = scObjPtr->GetProp-
erties();
 CString csPropName = "Name";
 ISCModelPropertyPtr nameProp = propColPtr > GetItem

141

(COleVariant(csPropName));
 if (nameProp != NULL)
 nameProp->PutValue(vtMissing, (long) SCVT_BSTR, csName);
 }

The following example illustrates how to set scalar property values using Visual Basic .NET.
The example uses a Model Object object from Example 9 and assumes that a transaction
has opened:

 ' NOTE: ISCSession::BeginTransaction() must be called prior to
calling this function
 ' ISCSession::CommitTransaction() must be called upon returning
from this function
 Public Sub SetScalarPropValue(ByRef scObj As SCAPI.ModelObject,
ByRef val As Variant)
 Dim modelProp As SCAPI.ModelProperty
 modelProp = scObj.Properties(Name)
 modelProp.Value = val
 End Sub

142

Setting Non-Scalar Property Values

To set a non-scalar property value, you must identify the specific value that you want to set.
This is done using the ValueId parameter. The ValueId can either be the zero-based index of
the property value collection or the name of the member if the property is a structure.

Note: For r7.3, erwin DM does not support naming non-scalar property members.

143

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature Description Valid Arguments

void Value(VARIANT ValueId
[optional], VARIANT ValueType
[optional], VARIANT Val)

Sets the indicated
property value with
the given value

ValueId:

VT_I4 Index for a non-scalar
property of which the given
value is set.

VT_BSTR Name of a member
in a non-scalar property of
which the given value is set.

ValueType:

Empty Not used.
Val:

Dependent upon the property
type.

Note: For information about valid property values, see the HTML document erwin
Metamodel Reference, in the Metamodel Reference Bookshelf located in the erwin Data
Modeler installation folder.

Example 22

The following example illustrates how to set non-scalar property values using C++. The
example uses a Model Object object from Example 9 and assumes that a transaction has
opened:

 // NOTE: ISCSession::BeginTransaction() must be called prior to
calling this
 // function
 // ISCSession::CommitTransaction() must be called upon returning
from this
 // function
 void SetNameProperty(ISCModelObjectPtr & scObjPtr, CString &
csValue)

144

 {
 ISCModelPropertyCollectionPtr propColPtr = scObjPtr->GetProp-
erties();
 CString csPropName = "Non-Scalar";
 ISCModelPropertyPtr nameProp = propColPtr > GetItem(COleVariant
(csPropName));
 if (nameProp != NULL)
 // Setting the first element
 nameProp->PutValue(COleVariant(0L), (long) SCVT_BSTR,
csValue);
 }

The following example illustrates how to set non-scalar property values using Visual Basic
.NET. The example uses a Model Object object from Example 9 and assumes that a trans-
action has opened:

 ' NOTE: ISCSession::BeginTransaction() must be called prior to
calling this function
 ' ISCSession::CommitTransaction() must be called upon returning
from this function
 Public Sub SetScalarPropValue(ByRef scObj As SCAPI.ModelObject,
ByRef val As Variant)
 Dim modelProp As SCAPI.ModelProperty
 modelProp = scObj.Properties(Name)
 Dim index As Long
 Index = 0 ' Setting index to zero
 modelProp.Value(index) = val ' index is used to access non-
scalar property
 End Sub

145

Deleting Objects

You can delete an object by removing the ISCModelObject interface instance of the object
from the instance of ISCModelObjectCollection. You identify the object that you want to
delete either by its pointer to the interface or by its object identifier.

146

ISCModelObjectCollection Interface

The following table contains information on the ISCModelObjectCollection interface, which
is used to delete model objects:

Signature Description Valid Arguments

VARIANT_BOOL
Remove(VARIANT
Object)

Removes the specified
model object from a
model

Object:

VT_UNKNOWN ISCModelObject * pointer
to the object that you want to delete.
Removes the given object.

VT_BSTR ID of the object. Removes the
object with the given object identifier.

Example 23

The following example illustrates how to delete objects in C++ if there is a model objects col-
lection and that a transaction has opened:

 CString csID; // ID of object to be removed
 // …
 CComVariant bRetVal = scObjColPtr->Remove(COleVariant(csID));

The following example illustrates how to delete objects in Visual Basic .NET if there is a
model objects collection and that a transaction has opened:

 bRetVal = scObjCol.Remove(objID)

147

Deleting Properties and Property Values

Properties are deleted by removing the property from the instance of the ISCModelProp-
ertyCollection interface. If the property is non-scalar, the individual property value can be
removed by using the RemoveValue method of the ISCModelProperty interface.

Note: For more information about valid property names and property identifiers, see the
HTML document erwin Metamodel Reference, in the Metamodel Reference Bookshelf loc-
ated in the erwin Data Modeler installation folder.

The following sections describe the interfaces used to delete model properties and model
property values.

148

ISCModelPropertyCollection Interface

The following table contains information on the ISCModelPropertyCollection interface:

Signature Description Valid Arguments

VARIANT_BOOL
Remove(VARIANT
ClassId)

Removes the indicated
property from the
bound object

ClassId:

VT_UNKNOWN ISCModelProperty pointer
to the object that you want to remove.
Removes the given property.

VT_BSTR Name of the property. Removes
the property with the given class name.

VT_BSTR ID of the property. Removes the
property with the given class identifier.

149

ISCModelProperty Interface

The following table contains information on the ISCModelProperty interface:

Signature Description Valid Arguments

VARIANT_BOOL
RemoveValue
(VARIANT ValueId
[optional])

Removes the spe-
cified value from
the property

ValueId:

Empty For scalar properties only.

VT_I4 Index of a non-scalar property. Removes
the value with the given index in a non-scalar
property.

VT_BSTR Name of the property member in a
non-scalar property. Removes the value of the
non-scalar property member with the given
name.

VARIANT_BOOL
RemoveAllValues()

Remove all val-
ues from the
property

None

Example 24

The following example illustrates how to delete scalar properties using C++ if there is a
model object and a transaction is open:

 CString propName("Some Property Name");
 // …
 CComVariant bRetVal = scObjPtr->GetProperties()->Remove(COleVari-
ant(propName));

The following example illustrates how to delete scalar properties using Visual Basic .NET if
there is a model object and a transaction is open:

 Dim propName As String
 propName = "Some Property Name"

bRetVal = scObj.Properties.Remove(propName)

150

Deleting Non-Scalar Property Values

To remove all the values from a non-scalar property, remove the property itself from the
ISCModelPropertyCollection using the Remove method. To remove a specific value from a
non-scalar property, use the RemoveValue method of the ISCModelProperty interface. As
with accessing the non-scalar property values, the property value is identified using the
ValueId parameter. ValueId can either be the zero-based index of the value, or the name of
the member if the property type is a structure.

Note: For r7.3, erwin DM does not support naming non-scalar property members.

Example 25

The following example illustrates how to delete non-scalar property values using C++ if
there is a model object and a transaction is open:

 ISCModelPropertyCollectionPtr propColPtr = scObjPtr->GetProperties
();
 CString csPropName = "Some Property Name";
 ISCModelPropertyPtr scPropPtr = propColPtr->GetItem(COleVariant
(csPropName));
 long index; // index of a member in a non-scalar property
 index = 0; // Set to the first element
 // …
 bRetVal = scPropPtr->RemoveValue(index); // remove single value
from the property

The following example illustrates how to delete non-scalar property values using Visual
Basic .NET if there is a model object and a transaction is open:

 Dim scProp As SCAPI.ModelProperty
 scProp = scObj.Properties("Some Property Name")
 bRetVal = scProp.RemoveValue(index) ' Remove single value from
the property

151

Saving the Model

If modifications were made to the erwin DM model, the persistence unit must be saved in
order to persist the changes.

152

ISCPersistenceUnit Interface

The following table contains information on the ISCPersistenceUnit interface:

Signature Description Valid Arguments

VARIANT_BOOL
Save(VARIANT Loc-
ator [optional],
VARIANT Disposition
[optional]

Persists
model data
to external
storage

Locator:

VT_BSTR Full path of the location to store the
model. Provides a new location for the persistence
unit data source as a string with a file or mart item
location, along with the attributes required for suc-
cessful access to storage.

Empty Indicates the use of the original persistence
unit location.

Disposition:

Specifies changes in access attributes, such as read only.

Example 26

The following example illustrates how to save a model using C++. The example uses a Per-
sistence Unit object from Example 5:

 void Save(ISCPersistenceUnitPtr & scPUnitPtr)
 {
 ISCPropertyBagPtr propBag = scPUnitPtr->GetPropertyBag ("Loc-
ator");
 long index = 0;
 _bstr_t bstrFileName = propBag->GetValue(COleVariant(index));
 // Change bstrFileName to a new location
 scPUnitPtr->Save(bstrFileName);
 }

The following example illustrates how to save a model using Visual Basic .NET. The example
uses a Persistence Unit object from Example 5:

 Public Sum Save(scPUnit As SCAPI.PersistenceUnit)
 Dim propBag as SCAPI.PropertyBag
 propBag = scUnit.PropertyBag(Locator)

153

 Dim sFileName As String
 sFileName = propBag.Value(Locator)
 sFileName = sFileName + .bak
 scPUnit.Save(sFileName)
 End Sub

154

Accessing Metamodel Information

You can obtain the metamodel of erwin DM by using the API. The metamodel can be
accessed in the same manner as an erwin DM model. As in the case with model data, the
ISCPersistenceUnit or ISCModelSet pointer in an ISCSession::Open call indicates the model
set with which you are working.

There is a special case for the intrinsic metamodel. To obtain the intrinsic metamodel for a
specific class of metadata, you can use the Property Bag component created with the Prop-
ertyBag method of the ISCApplicationEnvironment interface. A Property Bag instance pop-
ulated with EMX_Metadata_Class or EM2_Metadata_Class properties from the Application
category indicates the type of the intrinsic metamodel to access. The instance must be sub-
mitted as the first parameter in an ISCSession::Open call, instead of ISCPersistenceUnit or
ISCModelSet pointers. If the first parameter in an ISCSession::Open call is NULL, then the
intrinsic metamodel for the top model set in a persistence unit, the EMX class metadata,
will be accessed.

To indicate that a session will access metamodel information, you set the Level parameter
of the Open method to SCD_SL_M1.

155

ISCApplicationEnvironment Interface

The following table contains information on the ISCApplicationEnvironment interface:

Signature Description Valid Arguments

ISCPropertyBag

PropertyBag(VARIANT
Category[optional],
VARIANT Name
[optional], VARIANT
AsString[optional])

Populates a property
bag with one or more
property values as indic-
ated by Category and
Name

Category:

VT_BSTR Features returned from the
given category. Must be Application.

Name:

VT_BSTR The property with the
given name and category is returned.
Must be EMX Metadata Class for EMX
metadata and EM2 Metadata Class for
EM2 metadata.

AsString:

Empty All values in the property bag
are presented in their native type.

156

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Arguments

VARIANT_BOOL Open
(IUnknown * Unit,
VARIANT Level [optional],
VARIANT Flags [optional])

Binds self to the intrinsic
metamodel, persistence
unit, or model set identified
by the Unit parameter

Unit:

NULL The intrinsic metamodel
for the top model set in a per-
sistence unit. For the current ver-
sion this is EMX class metadata.

ISCPropertyBag The intrinsic
metamodel defined by the
metadata class in the first prop-
erty of the bag.

ISCPersistenceUnit The
metamodel for the top model set
in the persistence unit.

ISCModelSet The metamodel
for the model set.

Level:

SCD_SL_M1 Metadata access.
Flags:

Empty Defaults to SCD_SF_
NONE.

Example 27

The following example illustrates how to access an intrinsic metamodel using C++. The
example uses an Application object from Example 1:

 void AccessMetaModel(ISCApplicationPtr & scAppPtr)
 {
 ISCSessionPtr scSessionPtr = scAppPtr->GetSessions()->Add();
// add a new

157

 // session
 // Open EMX intrinsic metamodel
 CComVariant varResult = scSessionPtr->Open(NULL, (long) SCD_
SL_M1); // meta-model level
 if (varResult.vt == VT_BOOL && varResult.boolVal == FALSE)
 return;
 // …
 }

The following example illustrates how to access an intrinsic metamodel using Visual Basic
.NET. The example uses an Application object from Example 1:

 Public Sub AccessMetaModel(ByRef scApp As SCAPI.Application)
 Dim scBag As SCAPI.PropertyBag
 Dim scSession As SCAPI.Session

 ' Get a property bag with the EM2 metadata class
 scBag = scApp.ApplicationEnvironment.PropertyBag("Application
", "EM2 Metadata Class")
 ' Open EM2 intrinsic metamodel
 scSession = scApp.Sessions.Add
 scSession.Open(scBag, SCD_SL_M1)
 End Sub

158

Closing the API

When the client of the API has finished accessing the model, the sessions that were open
must be closed, and the persistence unit collection must be cleared.

159

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Argu-
ments

VARIANT_BOOL
Close()

Disconnects self from its associated per-
sistence unit

None

160

ISCSessionCollection Interface

The following table contains information on the ISCSessionCollection interface:

Signature Description Valid Arguments

VARIANT_
BOOL Remove
(VARIANT Ses-
sionId)

Removes a Ses-
sion object
from the col-
lection

SessionId:

VT_UNKNOWN Pointer to the
ISCSession interface. Removes the
given session from the collection.

VT_I4 Zero-based index in the ses-
sion collection. Removes the session
with the given index from the col-
lection.

Example 28

The following example illustrates how to close a session using C++. It assumes that there is a
Session object and the session is open. The examples use an Application object from
Example 1:

 void CloseSessions(ISCApplicationPtr & scAppPtr)
 {
 ISCSessionCollectionPtr scSessionColPtr = scAppPtr->GetSes-
sions();
 ISCSessionPtr scSessionPtr = scSessionColPtr->GetItem(COleVari-
ant(0L))
 // close the sessions
 scSessionPtr->Close(); // close a single session
 scSessionColPtr->Clear(); // clear the collection of ses-
sions
 }

The following example illustrates how to close a session using Visual Basic .NET. It assumes
that there is a Session object and the session is open. The examples use an Application
object from Example 1:

161

 Public Sub CloseSessions(scApp As SCAPI.Application)
 Dim scSessionCol As SCAPI.Sessions
 scSessionCol = scApp.Sessions
 Dim scSession As SCAPI.Session

 For Each scSession In scSessionCol
 scSession.Close
 Next
 While (scSessionCol.Count > 0)
 scSessionCol.Remove (0)
 End
 End Sub

162

Clearing Persistence Units

This section describes how to clear persistence units.

The effect of leaving persistence units in the Persistence Units collection is dictated by a con-
text in which an instance of the application is created. If a client is using the API in the stan-
dalone mode, all units are closed. If a client is using the API as an add-in component, then
after the client program is over, units are still open and available in the application user
interface with the exception of those that were explicitly closed and removed from the per-
sistence unit collection before exiting the program.

163

ISCPersistenceUnitCollection Interface

The following table contains information on the ISCPersistenceUnitCollection interface:

Signature Description Valid Argu-
ments

VARIANT_BOOL Clear
()

Purges all units from the col-
lection

None

Example 29

The following example illustrates how to clear persistence units using C++. It assumes that
there is an Application object from Example 1:

 // remove the persistence units
 scAppPtr->GetPersistenceUnits()->Clear();

The following example illustrates how to clear persistence units using Visual Basic .NET. It
assumes that there is an Application object from Example 1:

 scApp.PersistenceUnits.Clear

164

Error Handling

The API uses a generic COM error object to handle errors. Depending on the programming
environment, languages have their own protocols to retrieve errors from the generic error
object. For example, C++ and Visual Basic .NET use exception handling to handle errors. To
ensure a stable application, it is recommended that API clients use error handling to trap
potential errors such as attempting to access an object that was deleted, or attempting to
access an empty collection.

Example 30

The following example illustrates error handling using C++. It assumes that there is a Model
Object object from Example 9:

 long GetObjectProperties(ISCModelObjectPtr & scObjPtr)
 {
 // Get the collection of Properties
 ISCModelPropertyCollectionPtr scPropColPtr;
 try
 {
 scPropColPtr = scObjPtr->GetProperties();
 if (!scPropColPtr.GetInterfacePtr())
 {
 AfxMessageBox("Unable to Get Properties Col-
lection");
 return FALSE;
 }
 // …
 }
 catch(_com_error &error)
 {
 AfxMessageBox(error.Description());
 }
 }

The following example illustrates error handling using Visual Basic .NET. It assumes that
there is a Model Object object from Example 9:

165

 Public Sub GetObject(ByRef scSession As SCAPI.Session, ByRef objID
As String)
 Dim scObjCol as SCAPI.ModelObjects
 Dim scObj as SCAPI.ModelObject

 Try
 scObjCol = scSession.ModelObjects
 scObj = scObjCol.Item(objID) ' retrieves object with
given object ID
 Catch ex As Exception
 ' Failed
 Console.WriteLine(" API Failed With Error message :" +
ex.Message())
 End Try
 End Sub

In addition to the generic error object, the API provides an extended error handling mech-
anism with the Application Environment Message log. The message log can handle a
sequence of messages that is useful in a context of complex operations like transactions.

More information about the Application Environment Message log organization is located in
the Property Bag for Application Environment section.

166

ISCApplicationEnvironment

The following table contains information on the ISCApplicationEnvironment interface:

Signature Description Valid Arguments

ISCPropertyBag

PropertyBag(VARIANT
Category[optional],
VARIANT Name
[optional], VARIANT
AsString[optional])

Populates a property
bag with one or more
property values as
indicated by Category
and Name

Category:

VT_BSTR Must be Application.API.

Name:

VT_BSTR The property with the given
name and category is returned. Must be
Is Empty to determine if the message log
has messages. To retrieve the message
log content, it must be Log.

AsString:

Empty All values in the property bag
are presented in their native type.

VT_BOOL If set to TRUE, all values in
the property bag are presented as strings.

Example 32

The following example illustrates how to use the API to check messages from the API exten-
ded message log using C++. It assumes that there is an Application object from Example 1:

 CString GetExtendedErrorInfo(ISCApplicationPtr & scAppPtr)
 {
 CString csExtendedErrors = "";
 long index = 0;

 // Do we have messages in the log?
 variant_t val = scAppPtr->GetApplicationEnvironment()->
GetPropertyBag("Application.Api.MessageLog","Is Empty")-> GetValue
(COleVariant(index));
 if (val.vt == VT_BOOL && val.boolVal == false)

167

 {
 // Retrieve the log
 val = m_scAppPtr->GetApplicationEnvironment()-> GetProp-
ertyBag("Application.Api.MessageLog","Log")-> GetValue(COleVariant
(index));
 if (val.vt & VT_ARRAY)
 {
 // this is a SAFEARRAY

 VARIANT HUGEP *pArray;
 HRESULT hr;

 // Get a pointer to the elements of the array.
 hr = SafeArrayAccessData(val.parray, (void HUGEP**)&pArray);
 if (FAILED(hr))
 return csExtendedErrors;

 long numErrors = 0;
 VARIANT vValue = pArray[0]; // number of errors
 if (vValue.vt == VT_I4)
 numErrors = vValue.lVal;

 // …
 SafeArrayUnaccessData(val.parray);
 }
 }
 }

The following example illustrates how to use the API to check messages from the API exten-
ded message log using Visual Basic .NET. It assumes that there is an Application object from
Example 1:

 Public Sub GetExtendedErrorInfo(ByRef scApp As SCAPI.Application
)
 Dim nSize As Integer
 Dim nWarnings As Integer
 Dim nErrors As Integer
 Dim nIdx As Integer
 Dim nMsgNumber As Integer
 Dim aErrors() As Object

168

 ' Do we have messages in the log?
 If scApp.ApplicationEnvironment.PropertyBag("Applic-
ation.Api.MessageLog", _ "Is Empty").Value(0) = False Then
 ' Retrieve a log
 aErrors = _
 scApp.ApplicationEnvironment.PropertyBag("Applic-
ation.Api.MessageLog", _ "Log").Value(0)
 nSize = Int(aErrors(0))
 nIdx = 1
 nMsgNumber = 0
 Do While nMsgNumber < nSize
 Console.WriteLine("Error " & aErrors(nIdx) & " " +
aErrors(nIdx + 2))
 Select Case aErrors(nIdx + 1)
 Case SCAPI.SC_MessageLogSeverityLevels.SCD_ESL_
WARNING
 nWarnings = nWarnings + 1
 Case SCAPI.SC_MessageLogSeverityLevels.SCD_ESL_
ERROR
 nErrors = nErrors + 1
 End Select
 nIdx = nIdx + 8
 nMsgNumber = nMsgNumber + 1
 Loop

 Console.WriteLine("Total number of errors in the trans-
action " & Str(nSize) & " with: " _& Str(nWarnings) & " warnings,
" & Str(nErrors) & " errors.")
 End If
 End Sub

169

Advanced Tasks

The material in this section provides examples of some advanced tasks and how they can be
executed.

170

Creating User-Defined Properties

A User-Defined Property (UDP) is an example of a client expanding the erwin DM metadata
and involves creating and modifying objects on the metadata level. The structure of the UDP
definition is similar to the definition of all native properties. The following diagram shows
the metamodel objects involved when you define a UDP:

In this diagram an instance of the Property_Type object defines a UDP class, the Object_
Type object defines an object class with which the UDP is associated, and the Association_
Type object defines the association between object and property classes.

You are only required to create an instance of the Property_Type object to define a UDP.
erwin DM populates the rest of the necessary data. The following table describes the prop-
erties and tags of the Property_Type object:

Property
or Tag
Name

Description Valid Arguments

Name Property,
UDP name

erwin DM upholds the following convention in naming UDPs to
ensure their uniqueness. The convention is a three part name sep-
arated with dot (.) symbols:

<ObjectClassName>.<Logical/Physical>.<Name>

171

An example of this naming convention is: Model.Logical.My UDP

The erwin DM editors display only the last component.

Data_Type Property,
SCVT_BSTR

The property is read-only and set by erwin DM. All UDP values have
a string datatype.

tag_Is_
Locally_
Defined

Property,
TRUE

The property is read-only and set to TRUE for all user-defined
metadata.

Definition Property,
Optional

Optional Text that displays the UDP description.

tag_Is_
Logical

Tag, TRUE
or FALSE

Optional The tag has a TRUE value for UDPs used in logical mod-
eling.

tag_Is_
Physical

Tag, TRUE
or FALSE

Optional The tag has a TRUE value for UDPs used in physical mod-
eling.

tag_Udp_
Default_
Value

Tag Optional A string with the UDP default value.

tag_Udp_
Data_Type

Tag Defines the interpretation for the UDP value in the erwin DM edit-
ors. The valid values are:

1 (Integer)

2 (Text)

3 (Date)

4 (Command)

5 (Real)

6 (List)
The property value can be:

VT_I4 Uses the numeric values listed above.

VT_BSTR Uses the string values listed above.
Assumes the Text type if it is not specified.

tag_Udp_
Owner_
Type

Tag Required. Defines an object class to host instances of the UDPs.

VT_BSTR Name of an object class. Indicates the host class by
the given class name.

172

VT_BSTR Class ID of an object class. Indicates the host class by
the given identifier.

tag_Udp_
Values_
List

Tag String with comma-separated values. Only values from the list are
valid values for a UDP.

Valid only if the tag_Udp_Data_Type tag is set to List.

//the following example was changed in r9.6, because the

Example 33

The following example illustrates how to use the API to define a UDP using Visual Basic
Script:

 Dim oAPI

 Set oAPI = CreateObject("erwin9.SCAPI.9.0")

 Dim oPU

 Set oPU = oAPI.PersistenceUnits.Create(Nothing)

 Dim oSession

 Set oSession = oAPI.Sessions.Add

 SCD_SL_M1 = 1

 call oSession.Open(oPU, SCD_SL_M1)

 Dim TransId

 TransId = oSession.BeginNamedTransaction("Create UDP")

 Dim oUDP

 Set oUDP = oSession.ModelObjects.Add("Property_Type")

 ' Populate properties

 ' Add udp with Text type

 Set oUDP = oSession.ModelObjects.Add("Property_Type")

 oUDP.Properties("Name").Value = "Entity.Logical.My UDP1"

173

 oUDP.Properties("tag_Udp_Owner_Type").Value = "Entity"

 oUDP.Properties("tag_Is_Logical").Value = True

 oUDP.Properties("tag_Udp_Data_Type").Value = 2

 oUDP.Properties("tag_Udp_Default_Value").Value = "Text"

 oUDP.Properties("tag_Order").Value = "1"

 'Add udp with list type

 Set oUDP = oSession.ModelObjects.Add("Property_Type")

 oUDP.Properties("Name").Value = "Entity.Logical.My UDP5"

 oUDP.Properties("tag_Udp_Owner_Type").Value = "Entity"

 oUDP.Properties("tag_Is_Logical").Value = True

 oUDP.Properties("tag_Udp_Data_Type").Value = 6

 oUDP.Properties("tag_Udp_Values_List").Value = "1,2,3"
 oUDP.Properties("tag_Udp_Default_Value").Value = "1"

 oUDP.Properties("tag_Order").Value = "1"

 ' Commit changes

 oSession.CommitTransaction (TransId)

 ' Release the session

 oSession.Close

 Set oSession = Nothing

 oAPI.Sessions.Clear

 ' Save to the file

 Call oPU.Save("C:\Temp1\UDP.erwin", "OVF=Yes")

174

History Tracking

Historical information can be saved for your model, entities, attributes, tables, and columns.
erwin DM uses History objects to store the information in the model.

The API provides functionality that allows you to customize the process of history tracking
without having to work with the History objects directly. The BeginNamedTransaction func-
tion of the ISCSession interface accepts a Property Bag instance populated with the history
tracking properties. The properties are in effect at the initiation of an outer transaction and
are confined to the scope of the transaction.

175

ISCSession Interface

The following table contains information on the ISCSession interface:

Signature Description Valid Arguments

VARIANT
BeginNamedTransaction
(

BSTR Name, VARIANT
PropertyBag [optional])

Opens a transaction on the session
with the given name. Returns an
identifier of the transaction.

Name Provides a name for
a new transaction.

PropertyBag Collection of
parameters for history track-
ing in the transaction.

The following table describes the properties used in creating a new model:

Property
Name

Type Description

History_
Tracking

Boolean TRUE Indicates that all historical information generated during the
transaction will be marked as the API event. The TRUE value is
assumed if the property is not provided.

FALSE Uses the standard erwin DM mechanism of history tracking.

History_
Description

BSTR When the History_Tracking property is TRUE, it provides the content
for the Description field of the history event.

Note: A complete set of available properties is located in the appendix API Interfaces Refer-
ence.

Example 34

The following example illustrates how to mark history records for entities and attributes as
API events, and how to mark history records with the API History Tracking description using
Visual Basic .NET:

 Public Sub Main()
 Sub Main()
 Dim oApi As New SCAPI.Application
 Dim oBag As New SCAPI.PropertyBag
 Dim oPU As SCAPI.PersistenceUnit
 ' Construct a new logical-physical model. Accept the rest

176

as defaults
 oBag.Add("Model_Type", "Combined")
 oPU = oApi.PersistenceUnits.Create(oBag)
 ' Clear the bag for the future reuse
 oBag.ClearAll()
 ' Start a session
 Dim oSession As SCAPI.Session
 oSession = oApi.Sessions.Add
 oSession.Open(oPU)
 ' Prepare a property bag with the transaction properties
 oBag.Add("History_Description", "API History Tracking")
 ' Start a transaction
 Dim nTransId As Object
 nTransId = oSession.BeginNamedTransaction("Create Entity
and Attribute", oBag)
 ' Create an entity and an attribute
 Dim oEntity As SCAPI.ModelObject
 Dim oAttribute As SCAPI.ModelObject
 oEntity = oSession.ModelObjects.Add("Entity")
 oAttribute = oSession.ModelObjects.Collect(oEntity).Add
("Attribute")
 oAttribute.Properties("Name").Value = "Attr A"
 ' Commit
 oSession.CommitTransaction(nTransId)
 End Sub

You can select the history options for the model objects for which you want to preserve his-
tory, as well as to control the type of events to track. This is done within the History Options
tab in the Model Properties dialog.

If the check box for API events is cleared (unchecked), then no historic events from the API
category are recorded. It is possible to control the status of that check box, as well as the
check boxes for model object types from the API, by controlling the value of properties in
the model where the status of these check boxes is stored.

177

API Interfaces Reference

This appendix lists the interfaces contained in the API, together with the methods and argu-
ments associated with these interfaces. There is also a section that contains information
regarding enumerations and describes various Property Bag components.

This section contains the following topics:

ISCApplication
API Interfaces
Enumerations
Property Bag Reference
Location and Disposition in Model Directories and Persistence Units

178

ISCApplication

The ISCApplication interface is the entry point for the API client. Only one instance of the
component can be externally instantiated to activate the API. The client navigates the inter-
face hierarchy by using interface properties and methods to gain access to the rest of the
API functionality.

The following table contains the methods for the ISCApplication interface:

Method Description

BSTR ApiVersion() The API version.

ISCApplicationEnvironment *
ApplicationEnvironment()

Reports attributes of runtime environment and
available features, such as add-in mode, user
interface visibility, and so on.

ISCModelDirectoryCollection
* ModelDirectories()

Collects model directories accessible from the
current machine.

BSTR Name() Modeling tool application name.

ISCPersistenceUnitCollection
* PersistenceUnits()

Returns a collection of all persistence units
loaded in the application.

ISCSessionCollection * Ses-
sions()

Returns a collection of sessions created within
the application.

BSTR Version() Modeling tool application version.

BSTR
ResolveMartModelPath
(BSTR modelLongId)

Returns the path of the given model.

Returns empty if no model exists with the given
details.

179

API Interfaces

This section describes each API interface, and the methods associated with them. Where
applicable, signatures and valid arguments are also described.

Note: Some parameters contain an [optional] designation. This means that this particular
part of the parameter is optional and not required.

180

ISCApplicationEnvironment

The ISCApplicationEnvironment interface contains the information about the runtime envir-
onment.

The following table contains the methods for the ISCApplicationEnvironment interface:

Method Description

ISCPropertyBag *

PropertyBag(VARIANT Cat-
egory [optional],

VARIANT Name [optional],
VARIANT AsString
[optional])

Populates a property bag with one or more
property values as indicated by Category and
Name.

Note: More information about ISCApplicationEnvironment is located in the Property Bag for
Application Environment section.

181

ISCApplicationEnvironment::PropertyBag Arguments

Here is the signature for the PropertyBag function:

 ISCPropertyBag *PropertyBag(VARIANT Category, VARIANT Name,
VARIANT AsString)

The following table contains the valid arguments for the PropertyBag function:

Parameter Valid Type/Value Description

Category
[optional]

Empty Complete set of features from all cat-
egories are returned.

Category
[optional]

VT_BSTR Name
of category

Features from the given category are
returned.

Name
[optional]

Empty All properties from the selected category
are returned.

Name
[optional]

VT_BSTR Prop-
erty name

The property with the given name and cat-
egory is returned.

AsString
[optional]

Empty All values in the property bag are presen-
ted in native type.

AsString
[optional]

VT_BOOL TRUE
or FALSE

If set to TRUE, all values in the property
bag are presented as strings.

Note: More information about category and property names relating to VT_BSTR is located
in the Property Bag for Application Environment section.

182

ISCModelDirectory

The Model Directory encapsulates information on a single model directory entry. Examples
of the Model Directory are a file system directory or a mart library.

The following table contains the methods for the ISCModelDirectory interface:

Method Description

VARIANT_BOOL DirectoryExists(
BSTR Locator)

Returns TRUE if a specified directory exists.

VARIANT_BOOL Dir-
ectoryUnitExists(BSTR Locator)

Returns TRUE if a specified directory unit exists.

SC_ModelDirectoryFlags Flags() Model Directory flags. A 32-bit property flag word.

VARIANT_BOOL IsOfType(
ISCModelDirectory * Directory)

Returns TRUE if Directory has the same type of con-
nection as self.

For example, directory entries from the same mart and
with the same login attributes, such as user, password,
and so on, are considered of the same type.

ISCModelDirectory * LocateDir-
ectory (BSTR Locator, VARIANT Fil-
ter [optional])

Starts enumeration over the directory sub-entries.

ISCModelDirectory * LocateDir-
ectoryNext()

Locates the next sub-entry in the directory enumeration.
Returns a NULL pointer if no more model directory
entries can be found.

ISCModelDirectoryUnit *
LocateDirectoryUnit (BSTR Loc-
ator, VARIANT Filter [optional])

Starts enumeration over the directory units.

ISCModelDirectoryUnit *
LocateDirectoryUnitNext()

Locates the next unit in the directory enumeration.

BSTR Locator() Location of the directory including the absolute path and
parameters. Does not include password information.

BSTR Name() Model Directory name. For example, the file system dir-

183

ectory name without path information.

ISCPropertyBag* PropertyBag(
VARIANT List [optional], VARIANT
AsString [optional])

Returns a pointer on a property bag with the directory
properties.

Note: A directory property is present in the resulting
bag only if it has a value. If the property does not have
any value set, the property bag will not have the prop-
erty listed.

void PropertyBag(VARIANT List
[optional], VARIANT AsString
[optional], ISCPropertyBag* Prop-
erty Bag)

Accepts a pointer on a property bag with the directory
properties.

SC_ModelDirectoryType Type() Type of a directory.

184

ISCModelDirectory::DirectoryExists Arguments

Here is the signature for the DirectoryExists function:

 VARIANT_BOOL DirectoryExists(BSTR Locator)

The following table contains the valid arguments for the DirectoryExists function:

Para-
meter

Valid Type/Value Description

Locator BSTR String
with a directory
name

Identifies a directory path.

For an absolute path, the mart database
information and access parameters are
ignored.

185

ISCModelDirectory::DirectoryUnitExists Arguments

Here is the signature for the DirectoryUnitExists function:

 VARIANT_BOOL DirectoryUnitExists(BSTR Locator)

The following table contains the valid arguments for the DirectoryUnitExists function:

Para-
meter

Valid Type/Value Description

Locator BSTR String
with a directory
name

Identifies a directory unit path.

For an absolute path, the mart database
information and access parameters are
ignored.

186

ISCModelDirectory::IsOfType Arguments

Here is the signature for the IsOfType function:

 VARIANT_BOOL IsOfType(ISCModelDirectory * Directory)

The following table contains the valid arguments for the IsOfType function:

Para-
meter

Valid Type/Value Description

Directory ISCModelDirectory *. Model Directory com-
ponent pointer

Identifies a dir-
ectory

187

ISCModelDirectory::LocateDirectory Arguments

Here is the signature for the LocateDirectory function:

 ISCModelDirectory * LocateDirectory (BSTR Locator, VARIANT Filter)

The following table contains the valid arguments for the LocateDirectory function:

Para-
meter

Valid
Type/Value

Description

Locator BSTR String
with a dir-
ectory loc-
ation

Identifies a directory path that can contain wild-
card characters in the last path component in
order to search for sub-entries.

If the path provides an exact location, it can
also be used to return to a single model dir-
ectory entry.

For an absolute path, the mart database inform-
ation and access parameters are ignored.

Filter
[optional]

VT_BSTR
Options

Specifies a set of options to narrow a search.

188

ISCModelDirectory::LocateDirectoryUnit Arguments

Here is the signature for the LocateDirectoryUnit function:

 ISCModelDirectoryUnit * LocateDirectoryUnit (BSTR Locator, VARIANT
Filter)

The following table contains the valid arguments for the LocateDirectoryUnit function:

Para-
meter

Valid
Type/Value

Description

Locator BSTR String
with a directory
or unit location

Identifies a directory path that can contain
wildcard characters in the last path com-
ponent in order to search for units.

If the path provides an exact location, it can
also be used to return to a single model dir-
ectory unit.

For an absolute path, the mart database
information and access parameters are
ignored.

Filter
[optional]

VT_BSTR
Options

Specifies a set of options to narrow a search.

189

ISCModelDirectory::PropertyBag Arguments (Get Function)

Here is the signature for the PropertyBag (Get) function:

 ISCPropertyBag * PropertyBag(VARIANT List, VARIANT AsString)

The following table contains the valid arguments for the PropertyBag (Get) function:

Para-
meter

Valid Type/Value Description

List
[optional]

VT_BSTR Semi-
colon separated
list of property
names

Provides a list of the model directory prop-
erties. If the list is provided, only listed prop-
erties are placed in the returned property
bag.

List
[optional]

Empty Requests a complete set of properties.

AsString
[optional]

VT_BOOL TRUE
or FALSE

If set to TRUE, requests that all values in the
bag to be presented as strings. The default
is FALSE with all values in their native
format.

AsString
[optional]

Empty All values in the property bag are presented
in native type.

Note: Information about valid property names for VT_BSTR is located in the Property Bag
for Model Directory and Model Directory Unit section.

190

ISCModelDirectory::PropertyBag Arguments (Set Function)

Here is the signature for the PropertyBag (Set) function:

 void PropertyBag(VARIANT List, VARIANT AsString, ISCPropertyBag *
propBag)

The following table contains the valid arguments for the PropertyBag (Set) function:

Parameter Valid
Type/Value

Description

List
[optional]

Not used

AsString
[optional]

Not used

propBag ISCPropertyBag
*

A pointer on a property bag with the directory
properties to process.

Note: Information about valid property names and format for ISCPropertyBag * is located in
the Property Bag for Model Directory and Model Directory Unit section.

191

ISCModelDirectoryCollection

The Model Directory Collection lists all top-level Model Directories available including the
one made available with the application user interface. A client can register new Model Dir-
ectories with this collection.

Method Description

IUnknown _NewEnum() Constructs an instance of the collection enu-
merator object.

ISCModelDirectory * Add
(BSTR Locator, VARIANT Dis-
position [optional])

Adds a new top-level directory on the list of
available directories.

VARIANT_BOOL Clear() Removes all the top-level directories from
a collection and disconnects the directories
from associated marts.

long Count() The number of ModelDirectory com-
ponents in the collection.

ISCModelObject * Item(long
nIndex)

Returns an IUnknown interface pointer iden-
tified by its ordered position.

VARIANT_BOOL Remove
(VARIANT Selector,

VARIANT_BOOL Disconnect
[optional])

Removes a top-level directory from the list
of available directories.

192

ISCModelDirectoryCollection::Add Arguments

Here is the signature for the Add function:

 ISCModelDirectory * Add(BSTR Locator, VARIANT Disposition)

The following table contains the valid arguments for the Add function:

Parameter Valid
Type/Value

Description

Locator BSTR A model
directory loc-
ation

Identifies a model directory location along
with the attributes required for successful
access to storage.

Disposition
[optional]

VT_BSTR List
of keywords para-
meters

Arranges access attributes, such as resume
session.

193

ISCModelDirectoryCollection::Item Arguments

Here is the signature for the Item function:

 ISCModelDirectory * Item(long nIndex)

The following table contains the valid arguments for the Item function:

Parameter Valid
Type/Value

Description

nIndex A long num-
ber

Identifies an ordered position of a Model Directory
item. The index is zero-based.

Class
[optional]

Empty Returns the object specified by nIndex.

194

ISCModelDirectoryCollection::Remove Arguments

Here is the signature for the Remove function:

 VARIANT_BOOL Remove(VARIANT Selector, VARIANT_BOOL Disconnect
[optional])

The following table contains the valid arguments for the Remove function:

Para-
meter

Valid Type/Value Description

Selector VT_UNKNOWN
ISCModelDirectory
pointer

An object pointer for the Model Dir-
ectory to remove.

Selector VT_I4 Numeric index Identifying a model directory for
removal with a zero-based index.

195

ISCModelDirectoryUnit

The Model Directory Unit encapsulates information on a single directory unit. A file system
file and a model in a mart are examples of the Model Directory Unit.

The following table contains the methods for the ISCModelDirectoryUnit interface:

Method Description

SC_ModelDirectoryFlags
Flags()

Model directory unit flags. A 32-bit property
flag word.

VARIANT_BOOL IsOfType(
ISCModelDirectory * Dir-
ectory)

Returns TRUE if directory has the same type
of connection as self.

For example, directory entries from the same
mart and with the same login attributes, such
as user, password, and so on, are considered
of the same type.

BSTR Locator() Location of the directory unit including the
absolute path and parameters. Does not
include password information.

BSTR Name() Model directory unit name. For example, the
file system file name without path inform-
ation.

ISCPropertyBag* Prop-
ertyBag(VARIANT List
[optional], VARIANT
AsString [optional])

Returns a pointer on a property bag with the
directory unit properties.

Note: A directory unit property is present in
the resulting bag only if it has a value. If the
property does not have any value set, the
property bag will not have the property listed.

void PropertyBag(
VARIANT List [optional],
VARIANT AsString
[optional], ISCProp-
ertyBag* Property Bag)

Accepts a pointer on a property bag with the
directory unit properties.

196

SC_ModelDirectoryType
Type()

Type of a directory.

Note: More information about Model Directory flags is located in the Enumerations section.

197

ISCModelDirectoryUnit::IsOfType Arguments

Here is the signature for the IsOfType function:

 VARIANT_BOOL IsOfType(ISCModelDirectory * Directory)

The following table contains the valid arguments for the IsOfType function:

Para-
meter

Valid Type/Value Description

Directory ISCModelDirectory * Model Directory com-
ponent pointer

Identifies a dir-
ectory

198

ISCModelDirectoryUnit::PropertyBag Arguments (Get Function)

Here is the signature for the PropertyBag (Get) function:

 ISCPropertyBag * PropertyBag(VARIANT List, VARIANT AsString)

The following table contains the valid arguments for the PropertyBag (Get) function:

Para-
meter

Valid
Type/Value

Description

List
[optional]

VT_BSTR Semi-
colon separated
list of property
names

Provides a list of the model directory unit
properties. If the list is provided, only listed
properties are placed in the returned prop-
erty bag.

List
[optional]

Empty Requests a complete set of properties.

AsString
[optional]

VT_BOOL
TRUE or FALSE

If set to TRUE, requests that all values in the
bag to be presented as strings. The default is
FALSE with all values in their native format.

AsString
[optional]

Empty All values in the property bag are presented
in native type.

Note: Information about valid property names for VT_BSTR is located in the Property Bag
for Model Directory and Model Directory Unit section.

199

ISCModelDirectoryUnit::PropertyBag Arguments (Set Function)

Here is the signature for the PropertyBag (Set) function:

 void PropertyBag(VARIANT List, VARIANT AsString, ISCPropertyBag *
propBag)

The following table contains the valid arguments for the PropertyBag (Set) function:

Parameter Valid
Type/Value

Description

List
[optional]

Not used

AsString
[optional]

Not used

propBag ISCPropertyBag
*

A pointer on a property bag with the unit
properties to process.

Note: Information about valid property names and format for ISCPropertyBag * is located in
the Property Bag for Model Directory and Model Directory Unit section.

200

ISCModelObject

The ISCModelObject interface represents an object in a model.

The following table contains the methods for the ISCModelObject interface:

Method Description

SC_ModelObjectFlags Flags() Returns the flags of the object.

SC_CLSID ClassId() Returns the class identifier of the cur-
rent object.

BSTR ClassName() Returns the class name of the current
object.

ISCModelPropertyCollection * Col-
lectProperties(VARIANT ClassIds
[optional], VARIANT MustBeOn
[optional], VARIANT MustBeOff
[optional])

Returns a property collection of the
type that you want. This method
always returns a valid collection even
if the collection is empty.

ISCModelObject * Context() Passes back the context (parent) of
the object in the model's object tree.
Passes back NULL if the current
object is the tree root.

VARIANT_BOOL IsInstanceOf
(VARIANT ClassId)

Returns TRUE if self is an instance of
the passed class. This method
respects inheritance. If ClassId con-
tains an ancestor class, the method
returns TRUE.

VARIANT_BOOL IsValid() Returns TRUE if self is valid. This
method is used to detect if the ref-
erenced object is deleted.

BSTR Name() Returns the name or a string iden-
tifier of the current object.

SC_OBJID ObjectId() Uniquely identifies the current

201

object.

ISCModelPropertyCollection *
Properties()

Returns a property collection of all
available properties.

Note: More information about SC_ModelObjectFlags is located in the Enumerations section.

202

ISCModelObject::CollectProperties Arguments

Here is the signature for the CollectProperties function:

 ISCModelPropertyCollection * CollectProperties(VARIANT ClassIds,
VARIANT MustBeOn, VARIANT MustBeOff)

The following table contains the valid arguments for the CollectProperties function:

Parameter Valid Type/Value Description

ClassIds
[optional]

Empty All properties of the object are
returned.

ClassIds
[optional]

VT_ARRAY|VT_BSTR
SAFEARRAY of property IDs

Provides a list of property class
identifiers.

ClassIds
[optional]

VT_ARRAY|VT_BSTR
SAFEARRAY of property
names

Provides a list of property class
names.

ClassIds
[optional]

VT_BSTR ID of a property Identifies a property class.

ClassIds
[optional]

VT_BSTR Name of a prop-
erty

Identifies a property class.

ClassIds
[optional]

VT_BSTR List of IDs delim-
ited by semicolons

Provides a list of property class
identifiers.

ClassIds
[optional]

VT_BSTR List of property
names delimited by semi-
colons

Provides a list of property class
names.

MustBeOn
[optional]

Empty Defaults to SCD_MPF_DONT_
CARE which indicates no fil-
tering.

MustBeOn
[optional]

VT_I4 SC_ModelOb-
jectFlags flags that must be
on

Identifies the properties with
the specified flags set.

MustBeOff
[optional]

Empty Defaults to SCD_MPF_DONT_
CARE which indicates no fil-

203

tering

MustBeOff
[optional]

VT_I4 SC_ModelOb-
jectFlags flags that must be
off

Identifies the properties that do
not have the specified flags.

Note: For information about valid property class identifiers and valid property class names,
see the HTML document erwin Metamodel Reference, in the Metamodel Reference Book-
shelf located in the erwin Data Modeler installation folder. More information about SC_
ModelObjectFlags is located in the Enumerations section.

204

ISCModelObject::IsInstanceOf Arguments

Here is the signature for the IsInstanceOf function:

 VARIANT_BOOL IsInstanceOf(VARIANT ClassId)

The following table contains the valid arguments for the IsInstanceOf function:

Para-
meter

Valid Type/Value Description

ClassId VT_BSTR ID of an
object class

Identifies a target object class by the
given identifier.

ClassId VT_BSTR Name of an
object class

Identifies an object class by the given
name.

Note: For information about valid object class names and identifiers, see the HTML doc-
ument erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the
erwin Data Modeler installation folder.

205

ISCModelObjectCollection

The ISCModelObjectCollection interface is a collection of objects in the model that is con-
nected to the active session. Membership in this collection can be limited by establishing fil-
ter criteria.

The following table contains the methods for the ISCModelObjectCollection interface:

Method Description

IUnknown _NewEnum() Constructs an instance of the collection enu-
merator object.

ISCModelObject * Add
(VARIANT Class, VARIANT
ObjectId)

Adds an object of type Class to the model.

SC_CLSID * ClassIds() Returns a SAFEARRAY of class identifiers
(such as object type IDs).

Represents a value of the Model Object col-
lection attribute that limited the mem-
bership in the collection at the time when
this collection was created and can be used
for reference purposes.

ClassIds contains a list of acceptable class
identifiers (such as object types). If this list
is non-empty, the collection includes only
those objects whose class identifier appears
in the list. If the list is empty or returns a
NULL pointer, then all objects are included.

BSTR * ClassNames() Similar to ClassIds except that it returns a
SAFEARRAY of class names (such as object
type names).

ISCModelObjectCollection *
Collect(VARIANT Root,
VARIANT ClassId [optional],

Creates a collection of Model Objects,
which represents a subcollection of itself.
All filtering criteria specified in the Collect

206

VARIANT Depth [optional],
VARIANT MustBeOn
[optional], VARIANT
MustBeOff [optional])

call is applied toward membership in the
collection.

The method creates a valid collection even
though the collection may be empty.

All enumerations are depth-first.

long Count() Number of objects in the collection. The
number does not include the root object.

long Depth() Depth limit on iteration in the collection. -1
represents unlimited depth.

ISCModelObject * Item
(VARIANT nIndex, VARIANT
Class [optional])

Returns an IUnknown pointer for a Model
Object component identified by the Index
parameter.

SC_ModelObjectFlags
MustBeOff()

Filter on model object flags in the col-
lection.

SC_ModelObjectFlags
MustBeOn()

Filter on model object flags in the col-
lection.

VARIANT_BOOL Remove
(VARIANT Object)

Removes the specified model object from a
model.

ISCModelObject * Root() Returns a pointer to the root object in a col-
lection.

Note: For information about valid object class names and identifiers, see the HTML doc-
ument erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the
erwin Data Modeler installation folder.

207

ISCModelObjectCollection::Add Arguments

Here is the signature for the Add function:

 ISCModelObject * Add(VARIANT Class, VARIANT ObjectId)

The following table contains the valid arguments for the Add function:

Parameter Valid Type/Value Description

Class VT_BSTR Name of a
class

Identifies an object class by the given
class name.

Class VT_BSTR Class ID of
an object type

Identifies an object class by the given
identifier.

ObjectId
[optional]

Empty The API assigns an object identifier
for a new object.

ObjectId
[optional]

VT_BSTR Object ID
for a new object

The API assigns the given object iden-
tifier to the new object.

Note: For information about valid object class names and identifiers, see the HTML doc-
ument erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the
erwin Data Modeler installation folder.

208

ISCModelObjectCollection::Collect Arguments

Here is the signature for the Collect function:

 ISCModelObjectCollection * Collect(VARIANT Root, VARIANT ClassId,
VARIANT Depth, VARIANT MustBeOn, VARIANT MustBeOff)

The following table contains the valid arguments for the Collect function:

Para-
meter

Valid Type/Value Description

Root VT_UNKNOWN ISCModelObject pointer
of the root object

Provides a context
(parent) object for
the collection.

Root VT_BSTR ID of the root object Provides a context
(parent) object for
the collection.

ClassId
[optional]

VT_ARRAY|VT_BSTR SAFEARRAY of
class IDs

Contains a list of
acceptable class
identifiers.

ClassId
[optional]

VT_ARRAY|VT_BSTR SAFEARRAY of
class names

Contains a list of
acceptable class
names.

ClassId
[optional]

VT_BSTR Class ID Provides a class
identifier for a
monotype col-
lection.

ClassId
[optional]

VT_BSTR Semicolon delimited list of
class IDs

Contains a list of
acceptable class
identifiers.

ClassId
[optional]

VT_BSTR Class name Provides a type
name for a mono-
type collection.

ClassId VT_BSTR Semicolon delimited list of Contains a list of

209

[optional] class names acceptable class
names.

ClassId
[optional]

Empty Returns all des-
cendents regard-
less of class type.

Depth
[optional]

VT_I4 Maximum depth for descendents.
Depth of 1 returns the immediate children
of the root. A depth of -1 (which is the
default value) represents unlimited depth.

Returns the des-
cendents of the
root at a depth no
more than the
given depth.

Depth
[optional]

Empty Returns all des-
cendents of the
root (unlimited
depth).

MustBeOn
[optional]

VT_I4 SC_ModelObjectFlags that must
be set

Provides a set of
required flags.

MustBeOn
[optional]

Empty Defaults to SCD_
MOF_DONT_CARE.

MustBeOff
[optional]

VT_I4 SC_ModelObjectFlags that must
not be set

Provides a set of
flags that must not
be set.

MustBeOff
[optional]

Empty Defaults to SCD_
MOF_DONT_CARE.

Note: For information about valid object class names and identifiers, see the HTML doc-
ument erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the
erwin Data Modeler installation folder. More information about SC_ModelObjectFlags is loc-
ated in the Enumerations section.

210

ISCModelObjectCollection::Item Arguments

Here is the signature for the Item function:

 ISCModelObject * Item(VARIANT nIndex, VARIANT Class)

The following table contains the valid arguments for the Item function:

Para-
meter

Valid
Type/Value

Description

nIndex VT_UNKNOWN
Pointer to
ISCModelObject
interface

Identifies an object with the Model Object
pointer.

nIndex VT_BSTR ID of
an object

Identifies an object with the given object
identifier.

nIndex VT_BSTR
Name of an
object

If the name of an object is used, the Class
parameter must also be used. Identifies an
object with the given name and given object
class.

Class
[optional]

Empty Only if nIndex is not an object name.

Class
[optional]

VT_BSTR
Name of a class

Must be used if the nIndex parameter is the
name of an object. Identifies an object class
name.

Class
[optional]

VT_BSTR Class
ID of object type

Must be used if the nIndex parameter is the
name of an object. Identifies an object class
identifier.

Note: For information about valid object class names and identifiers, see the HTML doc-
ument erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the
erwin Data Modeler installation folder.

211

ISCModelObjectCollection::Remove Arguments

Here is the signature for the Remove function:

 VARIANT_BOOL Remove(VARIANT Object)

The following table contains the valid arguments for the Remove function:

Para-
meter

Valid Type/Value Description

Object VT_UNKNOWN. ISCModelOb-
ject pointer to an object

Identifies the removed object by
the Model Object pointer.

Object VT_BSTR ID of the object Identifies the removed object by
the object's identifier.

212

ISCModelProperty

The ISCModelProperty interface represents a property of a given object.

The following table contains the methods for the ISCModelProperty interface:

Method Description

BSTR ClassName() Returns the class name of the property.

BSTR FormatAsString() Formats the property value as a string.

ISCPropertyValueCollection *
PropertyValues()

Returns the collection of values for the model
property

long Count() Contains the number of values in the property.

SC_CLSID ClassId() Returns the class identifier of the property.

SC_ModelPropertyFlags Flags
()

Returns the flags of the property.

SC_ValueTypes DataType
(VARIANT ValueId [optional])

Passes back the identifier of the native value
type for the indicated property value.

VARIANT_
BOOL GetValueFacetIds(
Long* FacetsTrueBasket,
Long* FacetsFalseBasket)

Retrieves available property facet IDs.

FacetsTrueBasket is a SAFEARRAY of facet ID
numbers. The listed facets have TRUE as a
value.

FacetsFalseBasket is a SAFEARRAY of facet ID
numbers. The listed facets have FALSE as a
value.

The method returns FALSE if the property does
not have a value.

VARIANT_
BOOL GetValueFacetNames
(BSTR* Facet-
sTrueBasket,BSTR* Facet-
sFalseBasket)

Retrieves available property facet names.

FacetsTrueBasket is a SAFEARRAY of facet name
strings. The listed facets have TRUE as a value.

FacetsFalseBasket is a SAFEARRAY of facet -
name strings. The listed facets have FALSE as a
value.

213

The method returns FALSE if the property does
not have a value.

VARIANT_BOOL IsValid() Returns TRUE if self is valid.

VARIANT_BOOL
RemoveAllValues()

Removes all values from the property.

VARIANT_BOOL
RemoveValue(VARIANT
ValueId [optional])

Removes the specified value from the property.
If no values remain after the removal, the prop-
erty has a NULL value.

Returns TRUE if the value was removed.

VARIANT Value(VARIANT
ValueId [optional], VARIANT
ValueType [optional])

Retrieves the indicated property value in the
requested format.

Void SetValueFacets
(VARIANT* Facet-
sTrueBasket, VARIANT* Facet-
sFalseBasket)

Assigns new values to the property facets.

FacetsTrueBasket is a list of facets to be set to
TRUE. It is either a SAFEARRAY of facet ID num-
bers, a SAFEARRAY of facet name strings, or a
string with semicolon-separated facet names.

FacetsFalseBasket is a list of facets to be set to
FALSE. It is either a SAFEARRAY of facet ID num-
bers, a SAFEARRAY of facet name strings, or a
string with semicolon-separated facet names.

The method returns FALSE if the property does
not have a value

void Value(VARIANT ValueId
[optional], VARIANT
ValueType [optional],
VARIANT Val)

Sets the indicated property value with the given
value.

Note: For information about valid property class identifiers and valid property class names,
see the HTML document erwin Metamodel Reference, in the Metamodel Reference Book-
shelf located in the erwin Data Modeler installation folder. More information about SC_
ModelPropertyFlags is located in the Enumerations section. More information about prop-
erty datatypes is located in the SC_ValueTypes section.

214

215

ISCModelProperty::DataType Arguments

Here is the signature for the DataType function:

 SC_ValueTypes DataType(VARIANT ValueId)

The following table contains the valid arguments for the DataType function:

Para-
meter

Valid
Type/Value

Description

ValueId Empty Valid if a property is scalar or if all elements
of a multi-valued property have the same
datatype.

ValueId VT_I4 Index Ignored if the property is scalar. Identifies
an element in a multi-valued property with
a zero-based index.

ValueId VT_BSTR
Name of a non-
scalar element

Ignored if the property is scalar. If the prop-
erty is multi-valued, indicates an element by
name.

216

ISCModelProperty::RemoveValue Arguments

Here is the signature for the RemoveValue function:

 VARIANT_BOOL RemoveValue(VARIANT ValueId)

The following table contains the valid arguments for the RemoveValue function:

Para-
meter

Valid
Type/Value

Description

ValueId Empty Valid for a scalar property only.

ValueId VT_I4 Index Ignored if the property is scalar. Identifies
an element in a multi-valued property with
a zero-based index.

ValueId VT_BSTR
Name of a non-
scalar element

Ignored if the property is scalar. If the prop-
erty is multi-valued, indicates an element by
name.

217

ISCModelProperty::Value Arguments (Get Function)

Here is the signature for the Value (Get) function:

 VARIANT Value(VARIANT ValueId, VARIANT ValueType)

The following table contains the valid arguments for the Value (Get) function:

Para-
meter

Valid
Type/Value

Description

ValueId
[optional]

Empty Valid for a scalar property only.

ValueId
[optional]

VT_BSTR
Name of a non-
scalar element

Ignored if the property is scalar. If the prop-
erty is multi-valued, indicates an element by
name.

ValueId
[optional]

VT_I4 Index of
a non-scalar ele-
ment

Ignored if the property is scalar. If the prop-
erty is multi-valued, indicates an element by
a zero-based index.

ValueType
[optional]

Empty Indicates a native datatype for return values.

ValueType
[optional]

VT_I4 SCVT_
DEFAULT

Indicates a native datatype for return values.

ValueType
[optional]

VT_I4 SCVT_
BSTR

Indicates a conversion to a string for return
values.

218

ISCModelProperty::Value Arguments (Set Function)

Here is the signature for the Value (Set) function:

 void Value(VARIANT ValueId, VARIANT ValueType, VARIANT Val)

The following table contains the valid arguments for the Value (Set) function:

Parameter Valid Type/Value Description

ValueId
[optional]

Empty Valid for a scalar property only.

ValueId
[optional]

VT_I4 Index of a non-
scalar property

Indicates a value position with a
zero-based index in a non-scalar
property.

A value of -1 causes a new value
to be added at the end of the vec-
tor.

ValueId
[optional]

VT_BSTR Name of the
element in a multi-valued
property

Indicates a value position with the
given name.

ValueType
[optional]

Empty Not used

Val Dependent upon the prop-
erty type

219

ISCModelProperty::GetValueFacetIds Arguments

Here is the signature for the GetValueFacetIds function:

 VARIANT_BOOL GetValueFacetIds(Long* FacetsTrueBasket, Long* Facet-
sFalseBasket)

The following table contains the valid arguments for the GetValueFacetIds function:

Parameter Valid Type/Value Description

FacetsTrueBasket SAFEARRAY(VT_I4)
Array of facet IDs

Lists facets that are set and
have TRUE as a value.

FacetsFalseBasket SAFEARRAY(VT_I4)
Array of facet IDs

Lists facets that are set and
have FALSE as a value.

Note: More information about FacetsTrueBasket and FacetsFalse Basket is located in the
Property Bag for Application Environment section.

220

ISCModelProperty::GetValueFacetNames Arguments

Here is the signature for the GetValueFacetNames function:

 VARIANT_BOOL GetValueFacetNames(BSTR* FacetsTrueBasket, BSTR*
FacetsFalseBasket)

The following table contains the valid arguments for the GetValueFacetNames function:

Parameter Valid Type/Value Description

FacetsTrueBasket SAFEARRAY(VT_BSTR)
Array of facet names

Lists facets that are set and
have TRUE as a value.

FacetsFalseBasket SAFEARRAY(VT_BSTR)
Array of facet names

Lists facets that are set and
have FALSE as a value.

Note: More information about FacetsTrueBasket and FacetsFalse Basket is located in the
Property Bag for Application Environment section.

221

ISCModelProperty::SetValueFacets Arguments

Here is the signature for the SetValueFacets function:

 void SetValueFacets(VARIANT FacetsTrueBasket, VARIANT Facet-
sFalseBasket)

The following table contains the valid arguments for the SetValueFacets function:

Parameter Valid Type/Value Description

FacetsTrueBasket SAFEARRAY(VT_I4) array of facet IDs A list of facets to be
set to TRUE.

FacetsTrueBasket SAFEARRAY(VT_BSTR) array of facet
names

A list of facets to be
set to TRUE.

FacetsTrueBasket VT_BSTR string with facet names sep-
arated by semicolon

A list of facets to be
set to TRUE.

FacetsFalseBasket SAFEARRAY(VT_I4) array of facet IDs A list of facets to be
set to FALSE.

FacetsFalseBasket SAFEARRAY(VT_BSTR) array of facet
names

A list of facets to be
set to FALSE.

FacetsFalseBasket VT_BSTR string with facet names sep-
arated by semicolon

A list of facets to be
set to FALSE.

Note: More information about FacetsTrueBasket and FacetsFalse Basket is located in the
Property Bag for Application Environment section.

222

ISCModelPropertyCollection

The ISCModelPropertyCollection interface is a collection of properties for a given model
object. Membership in this collection can be limited by establishing filter criteria.

The following table contains the methods for the ISCModelPropertyCollection interface:

Method Description

IUnknown _
NewEnum()

Constructs an instance of the collection enumerator
object.

ISCModelProperty *
Add(VARIANT
ClassId)

Construct a new property for a bound model object if it
does not exist.

SC_CLSID * ClassIds
()

Returns a SAFEARRAY of property class identifiers in the
property collection.

Represents a value of the ModelProperties collection
attribute that limited the membership at the time when
this collection was created and can be used for ref-
erence purposes.

ClassIds contain an array of acceptable class identifiers
(such as property classes). If this list is non-empty, the
property collection includes only those properties whose
class identifier appears on the list. If the list is empty or
the caller supplies a NULL pointer, the collection
includes all the properties owned by the object.

BSTR * ClassNames
()

Same as the ClassIds property, but returns a SAFEARRAY
of property type names in the property collection.

long Count() Number of properties in the collection.

VARIANT_BOOL
HasProperty
(VARIANT ClassId,
VARIANT MustBeOn
[optional], VARIANT

Returns TRUE if the object owns a property of the
passed class.

Treats properties as absent if they fail to satisfy ClassIds,
MustBeOn, and MustBeOff attributes of the collection.

223

MustBeOff
[optional])

Alternative MustBeOn, MustBeOff can be offered using
optional parameters.

VARIANT_BOOL
HasPropertyFacets
(VARIANT ClassId,
VARIANT MustBeOn
[optional], VARIANT
MustBeOff
[optional],

VARIANT Facet-
sMustBeSet
[optional])

Returns TRUE if the object owns a property of the
passed class.

Treats properties as absent if they fail to satisfy ClassIds,
MustBeOn, and MustBeOff attributes of the collection.

Alternative FlagsMustBeOn, FlagsMustBeOff, Facet-
sMustBeSet can be offered using optional parameters.

FacetsMustBeSet indicates that a property must have
one or more facets. The parameter can be either a
SAFEARRAY of the facet's ID numbers, a SAFEARRAY of
the facet's name strings, or a string with facet names
separated by a semicolon.

ISCModelProperty *
Item(VARIANT
Class)

Returns a model object property.

The method checks if the property exists. If it does not,
the method creates a property description, returns an
ISCModelProperty instance, and sets the NULL flag for
the property. A new property value can be set by using
the Value property of the instance. However, it will fail
to retrieve a value before it is set.

The method allows you to create an instance of
ISCModelProperty for properties like ReadOnly, Main-
tained By the Tool, and so on. The value for these prop-
erties cannot be changed or assigned. Yet property
flags, datatype, and so on are available even when the
collection does not have the property instance. Use
HasProperty to check on the existence of the property
for a model object instance.

SC_ModelProp-
ertyFlags
MustBeOff()

Filter on property flags in the collection. The filter is set
when the property collection is created through the
ISCModelObject::CollectProperties method.

SC_ModelProp- Filter on property flags in the collection. The filter is set

224

ertyFlags MustBeOn
()

when the property collection is created through the
ISCModelObject::CollectProperties method.

VARIANT_BOOL
Remove(VARIANT
ClassId)

Removes the indicated property from the bound object.

Successful execution of the call renders all binds with
the removed property invalid. The client should release
all ISCModelProperty pointers, and all related Value Col-
lection and Value pointers known to represent such an
association. Calls to interfaces fail and the IsValid
method returns FALSE.

Note: For information about valid property class identifiers and valid property class names,
see the HTML document erwin Metamodel Reference, in the Metamodel Reference Book-
shelf located in the erwin Data Modeler installation folder. More information about SC_
ModelPropertyFlags is located in the Enumerations section.

225

ISCModelPropertyCollection::Add Arguments

Here is the signature for the Add function:

 ISCModelProperty * Add(VARIANT ClassId)

The following table contains the valid arguments for the Add function:

Para-
meter

Valid Type/Value Description

ClassId VT_BSTR Name of a prop-
erty class

Provides a new property type
name.

ClassId VT_BSTR ID of a property Provides a new property class
identifier.

Note: For information about valid property class identifiers and valid property class names,
see the HTML document erwin Metamodel Reference, in the Metamodel Reference Book-
shelf located in the erwin Data Modeler installation folder.

226

ISCModelPropertyCollection::HasProperty Arguments

Here is the signature for the HasProperty function:

 VARIANT_BOOL HasProperty(VARIANT ClassId, VARIANT MustBeOn,
VARIANT MustBeOff)

The following table contains the valid arguments for the HasProperty function:

Parameter Valid Type/Value Description

ClassId VT_BSTR Name of a
property

Identifies a class name for a property.

ClassId VT_BSTR ID of a prop-
erty

Identifies a class identifier for a prop-
erty.

MustBeOn
[optional]

VT_I4 SC_ModelProp-
ertyFlags that must be
set

Provides a set of required flags.

MustBeOn
[optional]

Empty Default is set to the MustBeOn filter
that was used to create the property
collection.

MustBeOff
[optional]

VT_I4 SC_ModelProp-
ertyFlags that must not
be set

Provides a set of flags that must not
be set.

MustBeOff
[optional]

Empty Default is set to the MustBeOff filter
that was used to create the property
collection.

Note: For information about valid property class identifiers and valid property class names,
see the HTML document erwin Metamodel Reference, in the Metamodel Reference Book-
shelf located in the erwin Data Modeler installation folder. More information about SC_
ModelPropertyFlags is located in the Enumerations section.

227

ISCModelPropertyCollection::HasPropertyFacets Arguments

Here is the signature for the HasPropertyFacets function:

 VARIANT_BOOL HasPropertyFacets(VARIANT ClassId, VARIANT Flag-
sMustBeOn, VARIANT FlagsMustBeOff, VARIANT FacetsMustBeSet)

The following table contains the valid arguments for the HasPropertyFacets function:

Parameter Valid Type/Value Description

ClassId VT_BSTR Name of a
property

Identifies a class name for a prop-
erty.

ClassId VT_BSTR ID of a prop-
erty

Identifies a class identifier for a
property.

FlagsMustBeOn
[optional]

VT_I4 SC_ModelProp-
ertyFlags that must be
set

Provides a set of required flags.

FlagsMustBeOn
[optional]

Empty Default is set to the MustBeOn fil-
ter that was used to create the
property collection.

FlagsMustBeOff
[optional]

VT_I4 SC_ModelProp-
ertyFlags that must not
be set

Provides a set of flags that must
not be set.

FlagsMustBeOff
[optional]

Empty Default is set to the MustBeOff fil-
ter that was used to create the
property collection.

FacetsMustBeSet
[optional]

SAFEARRAY(VT_I4)
array of facet IDs

Indicates one or more facets that
a property must have.

FacetsMustBeSet
[optional]

SAFEARRAY(VT_BSTR)
 array of facet names

Indicates one or more facets that
a property must have.

FacetsMustBeSet
[optional]

VT_BSTR string with
facet names separated
by semicolon

Indicates one or more facets that
a property must have.

FacetsMustBeSet Empty No facet requirements

228

[optional]

 Note: For information about valid property class identifiers and valid property class names,
see the HTML document erwin Metamodel Reference, in the Metamodel Reference Book-
shelf located in the erwin Data Modeler installation folder. More information about SC_
ModelPropertyFlags is located in the Enumerations section. More information about Facet-
sMustBeSet is located in the Property Bag for Application Environment section.

229

ISCModelPropertyCollection::Item Arguments

Here is the signature for the Item function:

 ISCModelProperty * Item(VARIANT Class)

The following table contains the valid arguments for the Item function:

Para-
meter

Valid Type/Value Description

Class VT_BSTR ID of a property Provides the property class iden-
tifier.

Class VT_BSTR Name of a prop-
erty

Provides the property class
name.

Note: For information about valid property class identifiers and valid property class names,
see the HTML document erwin Metamodel Reference, in the Metamodel Reference Book-
shelf located in the erwin Data Modeler installation folder.

230

ISCModelPropertyCollection::Remove Arguments

Here is the signature for the Remove function:

 VARIANT_BOOL Remove(VARIANT ClassId)

The following table contains the valid arguments for the Remove function:

Para-
meter

Valid Type/Value Description

ClassId ISCModelProperty * Identifies a property with a Model
Property object.

ClassId VT_BSTR Name of the
property

Identifies the property with a class
name.

ClassId VT_BSTR ID of the
property

Identifies the property with a class
identifier.

Note: For information about valid property class identifiers and valid property class names,
see the HTML document erwin Metamodel Reference, in the Metamodel Reference Book-
shelf located in the erwin Data Modeler installation folder.

231

ISCModelSet

A Model Set component provides access to a member of a hierarchically organized col-
lection of model sets.

The following table contains the methods for the ISCModelSet interface:

Method Description

SC_MODELTYPEID ClassId
()

Class identifier for metadata associated with
the model set.

BSTR ClassName() Class name for metadata associated with the
model set.

VARIANT_BOOL DirtyBit() Returns a flag that indicates that the data has
changed in the model set.

void DirtyBit(VARIANT_
BOOL)

Sets the flag that indicates that the data in
the model set has changed.

SC_MODELTYPEID
ModelSetId()

Passes back an identifier for the model set.

BSTR Name() Passes back a persistence unit name.

ISCModelSet * Owner() A pointer to the owner model set. Returns
NULL for the top model set in the persistence
unit.

ISCModelSetCollection *
OwnedModelSets()

Provides a collection with directly owned
model sets.

SC_MODELTYPEID Per-
sistenceUnitId()

The identifier for the persistence unit that
contains the model set.

ISCPropertyBag * Prop-
ertyBag(VARIANT List
[optional], VARIANT
AsString [optional])

Returns a property bag with the model set's
properties.

A model set property is present in the res-
ulting bag only if it has a value. If the prop-
erty does not have any value set, the
property bag will not have the property lis-

232

ted.

void PropertyBag(VARIANT
List [optional], VARIANT
AsString [optional],
ISCPropertyBag *
propBag)

Sets a model set with the properties in the
given property bag.

Note: For information about metadata class identifiers and names, see the HTML document
erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the erwin
Data Modeler installation folder.

233

ISCModelSet::PropertyBag Arguments (Get Function)

Here is the signature for the PropertyBag (Get) function:

 ISCPropertyBag * PropertyBag(VARIANT List, VARIANT AsString)

The following table contains the valid arguments for the PropertyBag (Get) function:

Para-
meter

Valid
Type/Value

Description

List
[optional]

VT_BSTR Semi-
colon separated
list of prop-
erties

Provides a list of the model set properties. If
the list is provided, only listed properties are
placed in the returned property bag.

List
[optional]

Empty Requests a complete set of properties.

AsString
[optional]

VT_BOOL TRUE
or FALSE

If set to TRUE, requests that all values in the
bag to be presented as strings. The default is
FALSE with all values in their native format.

AsString
[optional]

Empty All values in the property bag are presented in
native type.

Note: More information about property names is located in the Property Bag for Per-
sistence Units and Persistence Unit Collections section.

234

ISCModelSet::PropertyBag Arguments (Set Function)

Here is the signature for the PropertyBag (Set) function:

 void PropertyBag(VARIANT List, VARIANT AsString, ISCPropertyBag *
propBag)

The following table contains the valid arguments for the PropertyBag (Set) function:

Parameter Valid
Type/Value

Description

List
[optional]

Not used

AsString
[optional]

Not used

propBag ISCPropertyBag
*

A pointer on a property bag with the model set
properties to process.

235

ISCModelSetCollection

A Model Set Collection contains all model sets directly owned by an owner model set.

The following table contains the methods for the ISCModelSetCollection interface:

Method Description

IUnknown _NewEnum() Constructs an instance of a model set
enumerator object.

long Count() Number of model sets in the collection.

ISCPersistenceUnit * Item
(VARIANT nIndex)

Passes back a pointer for a ModelSet
component.

ISCModelSet * Owner() Returns a pointer to the owner model
set.

236

ISCModelSetCollection::Item Arguments

Here is the signature for the Item function:

 ISCModelSet * Item(VARIANT nIndex)

The following table contains the valid arguments for the Item function:

Para-
meter

Valid Type/Value Description

nIndex VT_UNKNOWN Pointer to
ISCPersistenceUnit

Creates a clone for the Model
Set object.

nIndex VT_I4 Index of a model set
in the model set collection

Ordered position in the col-
lection. The index is zero-based.

nIndex VT_BSTR Model Set ID Model set identifier.

nIndex VT_BSTR Metadata Class ID Class identifier for metadata
associated with a model set.

nIndex VT_BSTR Metadata Class
name

Class name for metadata asso-
ciated with a model set.

Note: For information about metadata class identifiers and names, see the HTML document
erwin Metamodel Reference, in the Metamodel Reference Bookshelf located in the erwin
Data Modeler installation folder.

237

ISCPersistenceUnit

A Persistence Unit encapsulates the information required to connect to an existing, outer
level persistence unit within an application.

The following table contains the methods for the ISCPersistenceUnit interface:

Method Description

VARIANT_BOOL DirtyBit() Returns a flag that indicates that the data
has changed in the persistence unit.

void DirtyBit(VARIANT_
BOOL)

Sets the flag that indicates that the data in
the persistence unit has changed.

VARIANT_BOOL HasSession
()

Returns TRUE if a unit has one or more ses-
sions connected.

VARIANT_BOOL IsValid() Returns TRUE if self is valid.

ISCModelSet * ModelSet() Passes back a pointer on the top model set in
the Persistence Unit.

BSTR Name() Passes back a persistence unit name.

SC_MODELTYPEID ObjectId
()

Passes back an identifier for the persistence
unit.

ISCPropertyBag * Prop-
ertyBag(VARIANT List
[optional], VARIANT
AsString [optional])

Returns a property bag with the persistence
unit's properties.

A unit property is present in the resulting
bag only if it has a value. If the property
does not have any value set, the property
bag will not have the property listed.

void PropertyBag(VARIANT
List [optional], VARIANT
AsString [optional], ISCProp-
ertyBag * propBag)

Sets a persistence unit with the properties in
the given property bag.

VARIANT_BOOL Save
(VARIANT Locator

Persists model data to external storage.
Uncommitted transactions are ignored.

238

[optional], VARIANT Dis-
position [optional])

Note: More information about property descriptions is located in the Property Bag for Per-
sistence Units and Persistence Unit Collections section.

239

ISCPersistenceUnit::PropertyBag Arguments (Get Function)

Here is the signature for the PropertyBag (Get) function:

 ISCPropertyBag * PropertyBag(VARIANT List, VARIANT AsString)

The following table contains the valid arguments for the PropertyBag (Get) function:

Para-
meter

Valid
Type/Value

Description

List
[optional]

VT_BSTR Semi-
colon separated
list of prop-
erties

Provides a list of the unit properties. If the list
is provided, only listed properties are placed
in the returned property bag.

List
[optional]

Empty Requests a complete set of properties.

AsString
[optional]

VT_BOOL TRUE
or FALSE

If set to TRUE, it requests that all values in the
bag be presented as strings. The default is
FALSE and all values are in their native
format.

AsString
[optional]

Empty All values in the property bag are presented in
native type.

Note: More information about valid property names is located in the Property Bag for Per-
sistence Units and Persistence Unit Collections section.

240

ISCPersistenceUnit::PropertyBag Arguments (Set Function)

Here is the signature for the PropertyBag (Set) function:

 void PropertyBag(VARIANT List, VARIANT AsString, ISCPropertyBag *
propBag)

The following table contains the valid arguments for the PropertyBag (Set) function:

Parameter Valid
Type/Value

Description

List
[optional]

Not used

AsString
[optional]

Not used

propBag ISCPropertyBag
*

A pointer on a property bag with the unit
properties to process.

241

ISCPersistenceUnit::Save Arguments

Here is the signature for the Save function:

 VARIANT_BOOL Save(VARIANT Locator, VARIANT Disposition)

The following table contains the valid arguments for the Save function:

Para-
meter

Valid
Type/Value

Description

Locator
[optional]

VT_BSTR Full
path to a stor-
age location

Provides a new location for the persistence unit
data source as a string with a file or mart item loc-
ation, along with the attributes required for suc-
cessful access to storage.

Locator
[optional]

Empty Indicates the use of the original persistence unit
location.

Disposition
[optional]

VT_BSTR List
of keywords
parameters

Specifies changes in access attributes, such as
read-only.

Note: More information about the format of the Locator parameter is located in the Locator
Property section.

242

ISCPersistenceUnit::ReverseEngineer

Here is the signature for the ReverseEngineer function:

 HRESULT ReverseEngineer ([in]ISCPropertyBag * PropertyBag,
[in]VARIANT
 REoptionpath,[in] VARIANT REConnectionString,[in] VARIANT REPass-
word);

The following table contains the valid arguments for the ReverseEngineer function:

Parameter Valid Type/Value Description

PropertyBag ISCPropertyBag * -
Pointer to a Property
Bag object.

Contains options for reverse
engineering.

REoptionpath VT_BSTR - Path. Specifies the full path to the
items storage for reverse
engineering.

REConnectionString VT_BSTR - Database
connection string.

Identifies the database con-
nect string.

REPassword VT_BSTR - Connection
password.

Null for windows
authentication.

Identifies the password used
for database connection.

The following table contains the valid arguments for the PropertyBag parameter.

Parameter Valid Type/Value Description

System_
objects

VT_BOOL -- True or
False.

Default: False

Retrieves system objects.

True: System objects are retrieved.

False: System objects are not
retrieved.

Oracle_Use_
DBA_Views

VT_BOOL -- True or
False

Default: False. Only

Use DBA Views for reverse engin-
eering.

True: Use DBA Views.

243

valid for Oracle. False: Do not use DBA Views.

Synch_
Table_Filter_
By_Name

VT_BSTR

Default: Null

Reverse engineers the tables that con-
tain the input filter strings.Multiple fil-
ter strings are specified as comma
separated values.

Synch_
Owned_Only

VT_BOOL -- True or
False.

Default: False

Retrieves tables and views of users.

True: Retrieve from current user or
owners.

False: Retrieve from all.

Synch_
Owned_
Only_Name

VT_BSTR

Default: Null

Reverse engineers tables and views
owned by the specified users.

Case_Option 25090:None

25091:lower

25092:Upper

Default: None

Specifies the case conversion option
for physical names.

Logical_
Case_Option

25045: None

25046: UPPER

25047: lower

25048:Mixed

Default: None

Specifies the case conversion option
for logical names.

Infer_
Primary_
Keys

VT_BOOL-- True or
False.

Default: None

Infers primary key columns for the
tables that are based on defined
indexes.

True: Primary Keys option is selected.

False: Primary Keys option is not
selected.

Infer_Rela-
tions

VT_BOOL-- True or
False.

Default: False

Infers the relationships between
tables that are based on either
primary key column names or
defined indexes.

244

True: Relations Option is selected.

False: Relations Option is not selec-
ted.

Infer_Rela-
tions_
Indexes

VT_BOOL-- True or
False.

Note: Set the value to
Indexes or Names
when Infer_Relations is
set to Relations.

Default: False.

Infers the relationships from the
table indexes.

True: Indexes option is selected.

False: Names option is selected.

Remove_
ERwin_Gen-
erated_Trig-
gers

VT_BOOL--True or
False.

Default: True.

Removes erwin generated triggers.

True: Remove Include Generated Trig-
gers.

False: Do not remove Include Gen-
erated Triggers.

Force_Phys-
ical_Name_
Option

VT_BOOL--True or
False.

Default: Force

Overrides the physical name property
for all objects in logical/physical mod-
els automatically during reverse
engineering.

True: Force physical name option.

False: Do not force physical name
option.

Connection String

 Server=<Target Server type>:<MajorVersion>:<MinorVersion>
 |AUTHENTICATION=<AuthenticationType>|USER=<UserName>|
 <ServerParameter>=<ServerParameterValue>

Example:

245

 SERVER-
R=16:10:0|AUTHENTICATION=4|USER=erwin|1=3|2=r8|3=127.0.0.1\\erwin_
mart01

The following table describes the valid values for a connection string.

Parameter Value Description

SERVER <TargetServerType> is an integer
value.

1: Access

2: Db2

3: DB2UDB

4: Foxpro

5: Inforrmix

6: Ingres

7: ISeries

8: MySQL

9: ODBC

9: PostgreSQL

10: Oracle

11: Progress

12: Redbrick

13: SAS

14: Sybase

15: SybaseIQ

16: SQLServer

17: Teradata

18: SQLAzure

19. Hive

20. Netezza

21. Redshift

Specifies the type of the database
server.

246

AUTHENTICATION 4 or 8

4: Database authentication

8: Windows authentication

Specifies the authentication type.

User User Name Specifies the user name.

The following table describes the type and value of ServerParameter:

Server Parameter Server Para-
meter Value

Description

1 2 or 3 2: Indicates "Use ODBC data
source".

3: Indicates "Use Native Con-
nection"

2 String Identifies the database.

3 String Identifies the server name.

4 String Identifies the alternate catalog
name.

5 String Identifies the ODBC data source
name.

6 String Identifies the connection string
for the database.

7 String Identifies the access database
path.

8 String Identifies the system database
path.

9 String Identifies the password for
access system database.

10 Boolean 0 or 1 0: ODBC data browse is turned
off.

1: ODBC data browse is turned
on.

247

11 Boolean 0 or 1 0: Do not use encrypted con-
nection.

1: Use encrypted connection.

12 Boolean 0 or 1 0: Do not connect to Oracle as
SYSDBA.

1: Connect to Oracle as
SYSDBA.

13

Note: Applicable
only to Hive

1 or 2 or 3 1: REDB using Hive

2: REDB using MySQL
Metastore

3: REDB using PostgreSQL
Metastore

Note: For the target database, Hive, an additional server parameter, 13, is required as
shown in the following example:

For REDB-PureHive:

Call oPersistenceUnit.ReverseEngineer(oPropertyBag,, "SERVER-
R=19:2:1|AUTHENTICATION=4|USER=<hive-user>|1=2|5=<cloudera
dsn>|10=0|13=1", "<hive-password>")

For REDB-Metastore MySQL:

Call oPersistenceUnit.ReverseEngineer(oPropertyBag,, "SERVER-
R=19:2:1|AUTHENTICATION=4|USER=<mysql-user>|1=2|5=<mysql dsn>|10=0|13=2",
"<mysql-password>")

For REDB-Metastore PostgreSQL:

Call oPersistenceUnit.ReverseEngineer(oPropertyBag,, "SERVER-
R=19:2:1|AUTHENTICATION=4|USER=<postgresql-user>|1=2|5=<postgresql dsn>|10-
0=0|13=3", "<postgresql-password>")

Reverse Engineering Sample Script:

 Dim oAPI
 Set oAPI = CreateObject("erwin9.SCAPI.9.0")

248

 Dim oPropertyBag
 Set oPropertyBag = CreateObject("erwin9.SCAPI.PropertyBag.9.0")
 Call oPropertyBag.Add("Model_Type", "Combined")
 Call oPropertyBag.Add("Target_Server", 1075859016)
 Call oPropertyBag.Add("Target_Server_Version", 10)
 Dim oPUnitCol
 Set oPUnitCol = oApi.PersistenceUnits
 Dim oPersistenceUnit
 Set oPersistenceUnit = oPUnitCol.Create(oPropertyBag)
 'oPropertyBag = CreateObject("erwin9.SCAPI.Prop-
ertyBag.9.0")
 'oPropertyBag = oApi.ApplicationEnvironment.PropertyBag
 oPropertyBag.ClearAll()
 Call oPropertyBag.Add("System_Objects", True)
 Call oPropertyBag.Add("Oracle_Use_DBA_Views", False)
 Call oPropertyBag.Add("Synch_Owned_Only", False)
 Call oPropertyBag.Add("Synch_Owned_Only_Name", "")
 Call oPropertyBag.Add("Case_Option", 25091)
 Call oPropertyBag.Add("Logical_Case_Option", 25046)
 Call oPropertyBag.Add("Infer_Primary_Keys", False)
 Call oPropertyBag.Add("Infer_Relations", False)
 Call oPropertyBag.Add("Infer_Relations_Indexes", False)
 Call oPropertyBag.Add("Remove_ERwin_Generated_Triggers",
False)
 Call oPropertyBag.Add("Force_Physical_Name_Option", False)
 Call oPropertyBag.Add("Synch_Table_Filter_By_Name", "")
 Call oPersistenceUnit.ReverseEngineer(oPropertyBag,
"c:\\re.xml",
 "SERVER=16:10:0|AUTHENTICATION=4|USER=erwin|1=3|2=r8|3=127.0.0.1
 \\erwin_mart01", "ca123456")
 Call oPersistenceUnit.Save("c:\\test.erwin", "OVF=Yes")

Attach NSM file with API while REDB:

An additional property,ReverseEngineerCSV, is available to attach an NSM file with API
while doing REDB. This property enables you to select an NSM file for reverse engineering.

Reverse Engineering Sample Script:

Dim oAPI
 Set oAPI = CreateObject("ERwin9.SCAPI.9.0")

249

 Dim oPropertyBag
 Set oPropertyBag = CreateObject("ERwin9.SCAPI.Prop-
ertyBag.9.0")
 'Create LP model with Database as SQL Server 2012
 Call oPropertyBag.Add("Model_Type", "Combined")
 Call oPropertyBag.Add("Target_Server", 1075859016)
 Call oPropertyBag.Add("Target_Server_Version", 11)
 'Create Persistence Unit
 Dim oPUnitCol
 Set oPUnitCol = oApi.PersistenceUnits
 'Create Propertybag
 Dim oPersistenceUnit
 Set oPersistenceUnit = oPUnitCol.Create(oPropertyBag)
 'Clear all propertybag objects
 oPropertyBag.ClearAll()
 Call oPropertyBag.Add("System_Objects", False)
 Call oPropertyBag.Add("Oracle_Use_DBA_Views", False)
 Call oPropertyBag.Add("Synch_Owned_Only", False)
 Call oPropertyBag.Add("Synch_Owned_Only_Name", "")
 Call oPropertyBag.Add("Case_Option", 25091)
 Call oPropertyBag.Add("Logical_Case_Option", 25046)
 Call oPropertyBag.Add("Infer_Primary_Keys", False)
 Call oPropertyBag.Add("Infer_Relations", False)
 Call oPropertyBag.Add("Infer_Relations_Indexes", False)
 Call oPropertyBag.Add("Remove_ERwin_Generated_Triggers",
False)
 Call oPropertyBag.Add("Force_Physical_Name_Option", False)
 'Reverse Engineer the SQL Server 2012 DB
 Call oPersistenceUnit.ReverseEngineerCSV (oPropertyBag,
 "C:\Users\Administrator\Desktop\NSM-API\table.xml",
 "C:\Users\Administrator\Desktop\NSM-API\res_demo.csv",
 "SERVER-
R=16:11:0|AUTHENTICATION=4|USER=sa|1=3|2=TestDG|3=localhost|11=0",
 "Erwin123")
 'Save the RE'd model
 Call oPersistenceUnit.Save("C:\User-
s\Administrator\Desktop\NSM-API\
 SQS2016RECSV.erwin", "OVF=Yes")

250

ISCPersistenceUnit::ForwardEngineer

Here is the signature for the ForwardEngineer_DB function:

 HRESULT FEModel_DB([in] VARIANT ConnectionInfo, [in] VARIANT Pass-
word,
 [in] VARIANT OptionXML, [out, retval] VARIANT_BOOL *ppVal);

The following table contains the valid arguments for the ForwardEngineer function:

Parameter Valid Type/Value Description

ConnectionInfo VT_BSTR Specifies the connection string to the
database.

For more information, see Connection
Sting in ISCPer-
sistenceUnit::ReverseEngineer.

Password VT_BSTR

Null if the authen-
tication type is Win-
dows.

Specifies the connection password to
the database.

OptionXML VT_BSTR Specifies the full path to items storage
for forward engineering.

Here is the signature for the ForwardEngineer_DDL function:

 HRESULT FEModel_DDL([in] VARIANT Locator, [in] VARIANT OptionXML,
[out, retval] VARIANT_BOOL *ppVal);

Parameter Valid
Type/Value

Description

Locator VT_BSTR Specifies the full path of the output script file.
(.sql/.ddl)

OptionXML VT_BSTR Specifies the full path to items storage for for-
ward engineering.

ppVal VT_BOOL Specifies a return value.

251

Forward Engineering Sample Script:

 Dim oAPI
 Set oAPI = CreateObject("erwin9.SCAPI.9.0")
 Dim oPersistenceUnit
 Set oPersistenceUnit = oApi.PersistenceUnits.Add
("c:\\test.erwin", "")
 Call oPersistenceUnit.FEModel_DB("SERVER-
=16:10:0|AUTHENTICATIO-
ON=8|USER=erwin|1=3|2=ModelTest|3=127.0.0.1", "ca123456",
"c:\\fe.xml")
 Call oPersistenceUnit.FEModel_DDL("c:\\test.sql",
"c:\\fe.xml")

252

ISCPersistenceUnitCollection

The ISCPersistenceUnitCollection contains all outer level persistence units loaded in the
application. It contains one entry for each active data model.

The following table contains the methods for the ISCPersistenceUnitCollection interface:

Method Description

IUnknown _NewEnum() Constructs an instance of unit
enumerator object.

ISCPersistenceUnit * Add(VARIANT Loc-
ator, VARIANT Disposition [optional])

Adds a new persistence unit to
the unit collection.

VARIANT_BOOL Clear() Purges all units from the col-
lection.

long Count() Number of persistence units in
the collection.

ISCPersistenceUnit * Create(ISCProp-
ertyBag * PropertyBag, VARIANT
ObjectId [optional])

Creates a new unit, and
registers the unit with the col-
lection.

ISCPersistenceUnit * Item(VARIANT nIn-
dex)

Passes back an IUnknown
pointer for a PersistenceUnit
component.

VARIANT_BOOL Remove(VARIANT
Selector, VARIANT Save [optional])

Removes a persistence unit
from the collection.

Note: More information about property descriptions is located in the Property Bag for Per-
sistence Units and Persistence Unit Collections section.

253

ISCPersistenceUnitCollection::Add Arguments

Here is the signature for the Add function:

 ISCPersistenceUnit * Add(VARIANT Locator, VARIANT Disposition)

The following table contains the valid arguments for the Add function:

Para-
meter

Valid
Type/Value

Description

Locator VT_BSTR Per-
sistence unit
location

Identifies a location for the persistence unit data
source as a string with a file or mart item location,
along with the attributes required for successful
access to storage.

Disposition
[optional]

VT_BSTR List
of keywords
parameters

Arranges access attributes, such as read only.

Note: More information about the Locator and Disposition parameters is located in the Loc-
ator Property section.

254

ISCPersistenceUnitCollection::Create Arguments

Here is the signature for the Create function:

 ISCPersistenceUnit * Create(ISCPropertyBag * Property Bag, VARIANT
ObjectId)

The following table contains the valid arguments for the Create function:

Para-
meter

Valid Type/Value Description

Property
Bag

ISCPropertyBag *
Pointer to a Property
Bag object

Supplies required and optional prop-
erties to the creation process, such as
type of the model.

ObjectId
[optional]

Empty Generates an ID for the new persistence
unit.

ObjectId
[optional]

VT_BSTR Object ID
for the new per-
sistence unit

Provides an identifier for the new per-
sistence unit.

Note: More information about property names and format is located in the Property Bag
for Persistence Units and Persistence Unit Collections section.

255

ISCPersistenceUnitCollection::Item Arguments

Here is the signature for the Item function:

 ISCPersistenceUnit * Item(VARIANT nIndex)

The following table contains the valid arguments for the Item function:

Para-
meter

Valid Type/Value Description

nIndex VT_UNKNOWN Pointer to
ISCPersistenceUnit

Creates a clone for the Per-
sistence Unit object.

nIndex VT_I4 Index of a persistence
unit in the persistence unit col-
lection

Ordered position in the col-
lection. The index is zero-
based.

nIndex VT_BSTR ID of a persistence
unit

Application-wide unique per-
sistence unit identifier.

256

ISCPersistenceUnitCollection::Remove Arguments

Here is the signature for the Remove function:

 VARIANT_BOOL Remove(VARIANT Selector, VARIANT Save)

The following table contains the valid arguments for the Remove function:

Para-
meter

Valid Type/Value Description

Selector VT_UNKNOWN
Pointer to ISCPer-
sistenceUnit inter-
face

Identifies the persistence unit.

Selector VT_BSTR ID of a
persistence unit

Application-wide unique persistence unit iden-
tifier.

Selector VT_I4 Index of a
persistence unit in
the persistence
unit collection

Ordered position in the collection. The index is
zero-based.

Save
[optional]

VT_BOOL If set to TRUE, it saves the persistence unit
prior to removing it from the collection. By
default, all unsaved data is saved unless the
Save parameter has a FALSE value, or the unit
has a temporary status with an unspecified loc-
ation property.

Note: Models should be closed prior to exiting the application. Add the following line in your
code to provide a call to explicitly close the model prior to exiting your application:

 ...
 SaveNewPersistenceUnit(ThePersistenceUnit, DefaultFileName)
 TheApplication.PersistenceUnits.Remove(ThePersistenceUnit, False)
 ...

257

ISCPropertyBag

The ISCPropertyBag interface is used to set and access the properties of ISCAp-
plicationEnvironment, ISCPersistenceUnit, and ISCModelSet. The ISCPropertyBag is also used
to set the properties of a new persistence unit.

The following table contains the methods for the ISCPropertyBag interface:

Method Description

VARIANT_BOOL
Add(BSTR Name,
VARIANT Value)

Adds a new property to the bag. Does not check for
duplicate names. Returns TRUE if the property was
added to the bag, otherwise, it is FALSE.

void ClearAll() Removes all properties from the bag.

long Count() Returns the number of properties.

BSTR Name(long
PropertyIdx)

Retrieves the indicated property name in the bag.

VARIANT Value
(VARIANT Prop-
erty)

Retrieves the indicated property in the bag.

void Value
(VARIANT Prop-
erty, VARIANT
Val)

Sets the indicated property in the bag.

258

ISCPropertyBag::Add Arguments

Here is the signature for the Add function:

 VARIANT_BOOL Add(BSTR Name, VARIANT Value)

The following table contains the valid arguments for the Add function:

Parameter Valid Type/Value Description

Name BSTR Name of a new property.

Value Dependent on the property Value for a new property.

259

ISCPropertyBag::Name Arguments

Here is the signature for the Name function:

 BSTR Name(long PropertyIdx)

The following table contains the valid arguments for the Name function:

Parameter Valid
Type/Value

Description

PropertyIdx Long A zero-based index for the requested
name.

260

ISCPropertyBag::Value Arguments (Get Function)

Here is the signature for the Value (Get) function:

 VARIANT Value(VARIANT Property)

The following table contains the valid arguments for the Value (Get) function:

Para-
meter

Valid Type/Value Description

Property VT_BSTR Name of the
property

Identifies retrieved property.

Property VT_I4 Index of the prop-
erty

Zero-based property index in the
Property Bag.

261

ISCPropertyBag::Value Arguments (Set Function)

Here is the signature for the Value (Set) function:

 void Value(VARIANT Property, VARIANT Val)

The following table contains the valid arguments for the Value (Set) function:

Para-
meter

Valid Type/Value Description

Property VT_BSTR Name of the prop-
erty

Identifies the property to
update.

Val Dependent on the property Value for the given property.

262

ISCPropertyValue

The ISCPropertyValue interface is a single value of a given property.

The following table contains the methods for the ISCPropertyValue interface:

Method Description

SC_ValueTypes * GetSup-
portedValueIdTypes()

Groups a list of supported value types for the cur-
rent value identifier and returns it as a
SAFEARRAY.

The GetValue method must be able to convert
the current value into any value type whose code
appears in the returned list. If the list is empty,
the value is available only in its native (such as
default) format. Reference properties must
return an empty list.

SC_ValueTypes * GetSup-
portedValueTypes()

Groups a list of supported value types and
returns it as a SAFEARRAY.

The GetValueId method must be able to convert
the current value into any value type whose code
appears in the returned list. If the list is empty,
then the current identifier is available only in its
native (such as default) format.

SC_CLSID PropertyClassId
()

Returns the class identifier of the current prop-
erty.

BSTR PropertyClassName() Returns the class name of the current property.

VARIANT Value(VARIANT
ValueType [optional])

Converts the current value to the passed value
type.

VARIANT ValueId(VARIANT
ValueType [optional])

Uniquely identifies the value in a non-scalar prop-
erty.

SC_ValueTypes
ValueIdType()

Passes back the default type of the ValueId that
identifies the value within the non-scalar prop-

263

erty.

SC_ValueTypes ValueType
()

Passes back the default type of the property
value.

Note: More information about value data types is located in the SC_ValueTypes section.

264

ISCPropertyValue::ValueId Arguments

Here is the signature for the ValueId function:

 VARIANT ValueId(VARIANT ValueType)

The following table contains the valid arguments for the ValueId function:

Para-
meter

Valid
Type/Valu-
e

Description

ValueType
[optional]

VT_I4
SCVT_I2 or
SCVT_I4

Returns VT_EMPTY if property is scalar. If it is non-
scalar, the value of the zero-based index of the prop-
erty is returned.

ValueType
[optional]

VT_I4
SCVT_BSTR

Returns VT_EMPTY if the property is scalar, returns
the name of the non-scalar property member if it is
available, or else it returns the index of the member.

ValueType
[optional]

VT_I4
SCVT_
DEFAULT

Returns VT_EMPTY if the property is scalar. If it is
non-scalar, the value of the zero-based index of the
property is returned.

ValueType
[optional]

Empty Defaults to SCVT_Default.

265

ISCPropertyValue::Value Arguments

Here is the signature for the Value function:

 VARIANT Value(VARIANT ValueType)

The following table contains the valid arguments for the Value function:

Parameter Valid
Type/Value

Description

ValueType
[optional]

VT_I4 SCVT_
DEFAULT

Identifies a request for the property value
in native format.

ValueType
[optional]

VT_I4 SCVT_
BSTR

Identifies a request for the string con-
version for the property value.

ValueType
[optional]

VT_I4 Type
of property

Identifies a target for type conversion.

ValueType
[optional]

Empty Defaults to SCVT_DEFAULT.

266

ISCPropertyValueCollection

The ISCPropertyValueCollection interface is a collection of values for a non-scalar property.

The following table contains the methods for the ISCPropertyValueCollection interface:

Method Description

IUnknown _NewEnum() Constructs an instance of the collection
enumerator object.

long Count() Number of values in the collection.

ISCPropertyValue * Item
(VARIANT ValueId)

Returns a single value from the prop-
erty value collection.

VARIANT_BOOL Facet (
VARIANT Facet)

Retrieves a facet. It fails if the facet is
not set.

Facet is either a facet ID or facet
name.

void Facet (VARIANT Facet,
VARIANT_BOOL Val)

Sets a facet with the given value.

Facet is either a facet ID or facet
name.

VARIANT_BOOL RemoveFacet (
VARIANT Facet)

Removes a facet to non-set state.

Facet is either a facet ID or facet
name.

267

ISCPropertyValueCollection::Item Arguments

Here is the signature for the Item function:

 ISCPropertyValue * Item(VARIANT ValueId)

The following table contains the valid arguments for the Item function:

Para-
meter

Valid Type/Value Description

ValueId VT_I4 Index of the element in
multi-valued property

Identifies an element with
a zero-based index.

ValueId VT_BSTR Name of an element in
a multi-valued property

Identifies an element by
name.

268

ISCPropertyValueCollection::Facet Arguments (Get Function)

Here is the signature for the Facet (Get) function:

 VARIANT_BOOL Facet (VARIANT Facet)

The following table contains the valid arguments for the Facet (Get) function:

Para-
meter

Valid Type/Value Description

Facet VT_I4 Facet ID Retrieves a facet value. It fails if the facet
is not set.

Facet VT_BSTR Facet
name

Retrieves a facet value. It fails if the facet
is not set.

Note: More information is located in the Property Bag for Application Environment section.

269

ISCPropertyValueCollection::Facet Arguments (Set Function)

Here is the signature for the Facet (Set) function:

 Void Facet (VARIANT Facet, VARIANT_BOOL Val)

The following table contains the valid arguments for the Facet (Set) function:

Para-
meter

Valid
Type/Value

Description

Facet VT_I4 Facet ID Sets a facet with the given value. It fails if the
facet is not set.

Facet VT_BSTR Facet
name

Sets a facet with the given value. It fails if the
facet is not set.

Note: More information is located in the Property Bag for Application Environment section.

270

ISCPropertyValueCollection::RemoveFacet Arguments

Here is the signature for the RemoveFacet function:

 VARIANT_BOOL RemoveFacet (VARIANT Facet)

The following table contains the valid arguments for the RemoveFacet function:

Parameter Valid Type/Value Description

Facet VT_I4 Facet ID Removes a facet to non-set state.

Facet VT_BSTR Facet name Removes a facet to non-set state.

Note: More information is located in the Property Bag for Application Environment section.

271

ISCSession

The ISCSession interface is an active connection between the API client and a model.

The following table contains the methods for the ISCSession interface:

Method Description

VARIANT BeginTrans-
action()

Opens a transaction on the session. The method
passes back a transaction identifier. Imple-
mentations use the identifier to scope Commit and
Rollback operations. If the application does not sup-
port nested transactions, it passes back VT_EMPTY.

Transaction nesting is implicit. If an API client
invokes BeginTransaction and a transaction is
already open, the new transaction is nested inside
the existing one.

VARIANT
BeginNamedTransaction
(BSTR Name, VARIANT
PropertyBag [optional])

Opens a transaction on the session. Similar to
BeginTransaction with an option to provide a trans-
action name and additional properties.

VARIANT_BOOL
ChangeAccess(SC_Ses-
sionFlags Flags)

Changes the model access to the specified level.

VARIANT_BOOL Close() Disconnects self from its associated persistence
unit or model set.

VARIANT_BOOL Com-
mitTransaction(VARIANT
TransactionId)

Commits the specified transaction and all nested
transactions contained within it.

SC_SessionFlags Flags() Returns a set of flags associated with the session.

VARIANT_BOOL IsValid() Returns TRUE if self is valid.

VARIANT_BOOL IsTrans-
actionEmpty(VARIANT All

TRUE if there was no data modification applied
from the beginning of the outer transaction or for

272

[optional]) the duration of the current transaction.

Returns TRUE with no open transaction present.

SC_SessionLevel Level() Returns the level at which the persistence unit or
model is bound.

This value is valid only if the session is open.

VARIANT_BOOL IsOpen() TRUE only if the session is open.

ISCModelObjectCollection
* ModelObjects()

Creates a ModelObject collection for the session.

The returned collection contains every object asso-
ciated with the persistence unit or model set.

SC_MODELTYPEID
ModelSetId()

Passes back an identifier for the model set asso-
ciated with the session.

BSTR Name() Name of the associated persistence unit or model
set.

Contains a valid name only when self is in the
Opened state.

VARIANT_BOOL Open
(IUnknown * Target,
VARIANT Level [optional],
VARIANT Flags [optional])

Binds to the persistence unit, model set, or intrinsic
metamodel identified by the Target parameter.

ISCPersistenceUnit * Per-
sistenceUnit()

Persistence unit associated with the session. Con-
tains a valid pointer only when it is in the Opened
state.

long TransactionDepth() Returns the current depth level of the nested trans-
action. Returns zero if there are no active trans-
actions present.

Note: More property information about the BeginNamedTransaction method is located in
the Property Bag for Session section. More information about SC_SessionFlags and SC_Ses-
sionLevel is located in the Enumerations section.

273

ISCSession::BeginNamedTransaction Arguments

Here is the signature for the BeginNamedTransaction function:

 VARIANT_BOOL BeginNamedTransaction(BSTR Name, VARIANT PropertyBag
)

The following table contains the valid arguments for the BeginNamedTransaction function:

Parameter Valid Type/Value Description

Name BSTR Provides a name for a new
transaction.

PropertyBag Empty No optional parameters.

PropertyBag VT_UNKNOWN Pointer to a
Property Bag object

Collection of the trans-
action properties.

Note: More information about the transaction properties is located in the Property Bag for
Session section.

274

ISCSession::CommitTransaction Arguments

Here is the signature for the CommitTransaction function:

 VARIANT_BOOL CommitTransaction(VARIANT TransactionId)

The following table contains the valid arguments for the CommitTransaction function:

Parameter Valid Type/Value Description

TransactionId The ID of the session Provides a transaction identifier.

275

ISCSession::IsTransactionEmpty Arguments

Here is the signature for the IsTransactionEmpty function:

 VARIANT_BOOL IsTransactionEmpty(VARIANT All)

The following table contains the valid arguments for the IsTransactionEmpty function:

Para-
meter

Valid
Type/Valu-
e

Description

All Empty Identifies a request on the status of the current trans-
action.

All VT_BOOL,
FALSE

Identifies a request on the status of the current trans-
action.

All VT_BOOL,
TRUE

Identifies a request on the status of all transactions
starting with the beginning of the outer transaction.

276

ISCSession::Open Arguments

Here is the signature for the Open function:

 VARIANT_BOOL Open(ISCPersistenceUnit * Unit, VARIANT Level,
VARIANT Flags)

The following table contains the valid arguments for the Open function:

Para-
meter

Valid Type/Value Description

Target ISCPersistenceUnit *
pointer to a persistence
unit

Provides a persistence unit to attach.

Target ISCModelSet *
pointer to a model set

Provides a model set to attach.

Target ISCPropertyBag *
pointer to a property
bag

Provides a property bag with the
description of an intrinsic metamodel
to attach.

Level
[optional]

Empty Defaults to SCD_SL_M0.

Level
[optional]

SCD_SL_M0 Data-level access.

Level
[optional]

SCD_SL_M1 Metamodel access.

Flags
[optional]

Empty Defaults to SCD_SF_NONE.

Flags
[optional]

SCD_SF_NONE Other sessions can have access to the
attached persistence unit.

Flags
[optional]

SCD_SF_EXCLUSIVE Other sessions cannot have access to
the attached persistence unit.

277

ISCSession::RollbackTransaction Arguments

Here is the signature for the RollbackTransaction function:

 VARIANT_BOOL RollbackTransaction(VARIANT TransactionId)

The following table contains the valid arguments for the RollbackTransaction function:

Parameter Valid Type/Value Description

TransactionId The ID of the session Provides a transaction identifier.

278

ISCSessionCollection

The Session Collection contains the active connections between the API client and the applic-
ation.

The following table contains the methods for the ISCSessionCollection interface:

Method Description

IUnknown _
NewEnum()

Constructs an instance of a session enumerator object.

ISCSession *
Add()

Construct a new, closed Session object, and adds it to the
collection.

VARIANT_
BOOL Clear()

Removes all Session objects from the collection

long Count() The number of sessions in the collection.

ISCSession *
Item(long nIn-
dex)

Passes back a session identified by its ordered position.

VARIANT_
BOOL Remove
(VARIANT Ses-
sionId)

Removes a Session object from the collection. If the ses-
sion is opened, it is closed before it is removed. All com-
mitted changes are saved in the persistence unit.

279

ISCSessionCollection::Item Arguments

Here is the signature for the Item function:

 ISCSession * Item(long Index)

The following table contains the valid arguments for the Item function:

Parameter Valid Type/Value Description

Index long-Index Provides a zero-based index of a session.

280

ISCSessionCollection::Remove Arguments

Here is the signature for the Remove function:

 VARIANT_BOOL Remove(VARIANT SessionId)

The following table contains the valid arguments for the Remove function:

Para-
meter

Valid Type/Value Description

SessionId VT_UNKNOWN Pointer to the
ISCSession interface

Identifies a session with the
Session object.

SessionId VT_I4 Index in the session col-
lection

Provides a zero-based index
of a session.

281

Enumerations

This section contains information regarding the various enumerations for the API. The enu-
merations define valid values for various properties.

282

SC_ModelDirectoryFlags

The following table contains the properties and enumerations for SC_ModelDirectoryFlags:

Property Enumeration Description

SCD_MDF_DIRECTORY 0 Directory

SCD_MDF_ROOT 1 Root directory

283

SC_ModelDirectoryType

The following table contains the properties and enumerations for SC_ModelDirectoryType:

Property Enumeration Description

SCD_MDT_NONE 0 Type is not available

SCD_MDT_FILE 1 File system

SCD_MDT_MART 2 Mart

284

SC_ModelObjectFlags

The following table contains the properties and enumerations for SC_ModelObjectFlags:

Property Flag
Bit

Enumeration Description

SCD_MOF_DONT_
CARE

0 No flags are set

SCD_MOF_
PERSISTENCE_UNIT

0 1 Object is a persistence unit (such as model)

SCD_MOF_USER_
DEFINED

1 2 Object is user-defined (such as user-defined prop-
erties)

SCD_MOF_ROOT 2 4 Object is the root object (such as model)

SCD_MOF_TOOL 3 8 Object is maintained by the tool

SCD_MOF_DEFAULT 4 16 Object is created by the tool and not removable

SCD_MOF_
TRANSACTION

5 32 Object is new or updated in a transaction and the
transaction was not committed

285

SC_ModelPropertyFlags

The following table contains the properties and enumerations for SC_ModelPropertyFlags:

Property Flag
Bit

Enumeration Description

SCD_MPF_DONT_CARE 0 No flags are set

SCD_MPF_NULL 0 1 Property has NULL value or no value

SCD_MPF_USER_
DEFINED

1 2 Property is user-defined

SCD_MPF_SCALAR 2 4 Property is scalar

SCD_MPF_TOOL 3 8 Property is maintained by the tool

SCD_MPF_READ_ONLY 4 16 Property is read-only (not used in erwin
DM)

SCD_MPF_DERIVED 5 32 Property is inherited, calculated, or
derived

SCD_MPF_OPTIONAL 6 64 Property is optional and can be removed

286

SC_SessionFlags

The following table contains the properties and enumerations for SC_SessionFlags:

Property Enu-
meration

Description

SCD_SF_
NONE

0 Session has non-exclusive access to its connected
persistence unit. Other sessions can connect to the
same persistence unit.

SCD_SF_
EXCLUSIVE

1 Session has exclusive access to its connected per-
sistence unit. No other sessions are allowed to
access the persistence unit.

287

SC_SessionLevel

The following table contains the properties and enumerations for SC_SessionLevel:

Property Enumeration Description

SCD_SL_NONE -1 Not used

SCD_SL_M0 0 Data level access

SCD_SL_M1 1 Metamodel access

288

SC_ValueTypes

The following table contains the properties and enumerations for SC_ValueTypes:

Property Enu-
meration

Description

SCVT_NULL 0 Missing value

SCVT_I2 1 Signed 16-bit integer

SCVT_I4 2 Signed 32-bit integer

SCVT_UI1 3 Unsigned 8-bit integer. Do not use this type to
hold character data.

SCVT_R4 4 4 byte floating point real

SCVT_R8 5 8 byte floating point real

SCVT_
BOOLEAN

6 Boolean

SCVT_
CURRENCY

7 64-bit currency value

SCVT_
IUNKNOWN

8 IUnknown interface pointer

SCVT_
IDISPATCH

9 IDispatch interface pointer

SCVT_DATE 10 Date value in VARIANT_DATE format

SCVT_BSTR 11 String

SCVT_UI2 12 Unsigned 16-bit integer

SCVT_UI4 13 Unsigned 32-bit integer

SCVT_GUID 14 GUID

SCVT_OBJID 15 A string (VT_BSTR) contains an object identifier
with offset

SCVT_BLOB 16 SAFEARRAY of unsigned BYTEs

SCVT_ 17 Default value type

289

DEFAULT

SCVT_I1 18 Signed 1 byte integer. Do not use this type to
hold character data.

SCVT_INT 19 Machine-dependent signed integer

SCVT_UINT 20 Machine-dependent unsigned integer

SCVT_RECT 21 Rectangle-array of four integers (VT_ARRAY &
VT_I2)

SCVT_POINT 22 Point-array of two integers (VT_ARRAY & VT_
I2)

SCVT_I8 23 Signed 64-bit integer

SCVT_UI8 24 Unsigned 64-bit integer

SCVT_SIZE 25 Size array of two integers (VT_ARRAY & VT_I4)

290

Property Bag Reference

This section contains information about the content of the Property Bag container. A prop-
erty bag is a placeholder for an array of properties. The content of the bag is dictated by a
source interface.

291

Property Bag for Application Environment

This property bag provides access for Application Features sets. The parameters of the Prop-
ertyBag call determine the context of the bag. The contents of the bag can have one of two
available forms, either native format or a string based on the optional parameter of the
PropertyBag property of the ISCApplicationEnvironment interface.

Feature categories in the Category parameter of the PropertyBag property are hierarchical
and use a dot (.) to define feature subsets. For example, the Application category populates
a property bag with a complete set of erwin DM features, while Application.API provides a
subset related to the API.

If the Category parameter is not set, then the Property Bag property returns the complete
set of all the features from all the available categories.

292

ISCApplicationEnvironment::PropertyBag

The PropertyBag function from the ISCApplicationEnvironment interface populates a prop-
erty bag with one or more property values as indicated by Category and Name.

Here is the signature for the ISCApplicationEnvironment PropertyBag function:

 ISCPropertyBag * PropertyBag(VARIANT Category, VARIANT Name,
VARIANT AsString)

The following table contains the valid arguments for the ISCApplicationEnvironment Prop-
ertyBag function:

Parameter Valid Type/Value Description

Category
[optional]

Empty Complete set of features from all cat-
egories are returned.

Category
[optional]

VT_BSTR Name
of category

Features from the given category are
returned.

Name
[optional]

Empty All properties from the selected category
are returned.

Name
[optional]

VT_BSTR Name
of property

The property with the given name and cat-
egory is returned.

AsString
[optional]

Empty All values in the property bag are presen-
ted in native type.

AsString
[optional]

VT_BOOL TRUE
or FALSE

If set to TRUE, all values in the property
bag are presented as strings.

293

Category Parameter Contains an Empty String

The following table describes the Category parameter that contains an empty string:

Property Name Type Description

Categories SAFEARRAY(BSTR) Returns an array of all the available categories.

294

Application Category

The following table describes the Application category, which describes the features asso-
ciated with the erwin DM tool:

Property
Name

Type Description

Title BSTR Provides the erwin DM title.

Version BSTR Provides the erwin DM version.

Hosting_
Application

Long 0 Returns 0 if the API is controlled by third-party
application, in standalone mode.

1 Returns 1 if the erwin DM user interface is act-
ive and the API is in add-in mode.

Metadata_Ver-
sion

Long Metadata value for the current version of erwin DM.

EMX_
Metadata_
Class

SC_
MODELTYPEID

Metadata class identifier for EMX model sets.

EM2_
Metadata_
Class

SC_
MODELTYPEID

Metadata class identifier for EM2 model sets.

295

Application.API Category

The following table describes the Application.API category, which describes the features
associated with the API:

Property Name Type Description

API_Version BSTR Provides the version of the API interfaces.

API_Major_Version_Number Long The API major version number.

API_Minor_Version_Number Long The API minor version number.

296

Application.API.Features Category

The following table describes the Application.API.Features category, which summarizes the
level of support the API provides in its main set of operations:

Property
Name

Typ-
e

Description

Undo Long Describes the ability to undo operations.

0 Undo not supported.

Non-zero Undo is supported.

Redo Long Describes the ability to redo undone operations.

0 Redo not supported.

Non-zero Redo is supported.

Change_Log-
ging

Long Describes the ability to report all changes since the last syn-
chronization with the client.

0 Change logging not supported.

Non-zero Change logging is supported.

Ownership_
Support

Long Queries the support level of the application for object ownership.
The following describes the support levels:

0 The application does not support object ownership.

1 The application supports ownership and the ownership
meta-relation contains no cycles.

2 The application supports ownership and the ownership
meta-relation contains cycles.

Transactions Long Describes the level of support for transaction control. The fol-
lowing describes the support levels:

0 No support for transactions.

1 Begin and End only. No nesting.

2 Begin, End, and Rollback. No nesting.

3 Begin, End, and Rollback, with arbitrary transaction nesting.

297

298

Application.API.MessageLog Category

The following table describes the Application.API.MessageLog category, which provides
access to additional messages registered during API operations:

Property
Name

Type Description

Is_Empty Boolean Returns TRUE if the message log is not empty. The log is
reset before the beginning of every API operation.

Log SAFEARRAY
(VARIANT)

Returns the content of the log.

The Property Log from the MessageLog category is organized as a one-dimensional
SAFEARRAY with VARIANT type as elements. The array has the following structure:

The following table describes the elements of the array:

Message
Log Ele-
ment

Type Description

Total
Number

Long Total number of messages in the array. The value can be zero
if there were no messages when the Log property was reques-
ted.

Error
Code

BSTR A message string identifier.

Severity
Code

Long The following are the SC_MessageLogSeverityLevels severity
codes:

SCD_ESL_NONE No severity code was assigned.

299

SCD_ESL_INFORMATION Information message.

SCD_ESL_WARNING Warning message.

ESD_ESL_ERROR Error message.

Message BSTR Message text.

Model
Set Id

SC_
MODELSETID

An identifier of a model set associated with a message. An ele-
ment has the VARIANT type VT_EMPTY if no data was
provided.

Object
Type

SC_CLSID Class identifier for a model object associated with a message.
An element has the VARIANT type VT_EMPTY if no data was
provided.

Object Id SC_OBJID Identifier for a model object associated with a message. The
identifier is unique in the scope of the model set. An element
has the VARIANT type VT_EMPTY if no data was provided.

Property
Type

SC_CLSID Class identifier for a property associated with a message. An
element has the VARIANT type VT_EMPTY if no data was
provided.

Reserved Always marked as VT_EMPTY.

Note: For information about object class identifiers and property class identifiers, see the
HTML document erwin Metamodel Reference, in the Metamodel Reference Bookshelf loc-
ated in the erwin Data Modeler installation folder. More information about using the
Model Set Identifier to locate a model set is located in the Accessing a Model and Accessing
a Model Set sections. More information about using the Class Identifier to learn more about
object types and property types is located in the Accessing Metamodel Information section.
More information about using the Object Identifier to access the associated model object is
located in the Accessing Objects in a Model section.

300

Application.Modeling Category

The Application.Modeling category describes the features associated with the erwin DM
modeling engine:

Property Name Type Description

Model_Property_
Value_Facet_Ids

SAFEARRAY
(Long)

The data is organized as a one-dimensional
SAFEARRAY with the Long type as elements.

The elements represent property value facet IDs avail-
able in model data.

The elements are ordered to match the order in the
Model_Property_Value_Facet_Names.

Model_Property_
Value_Facet_Names

SAFEARRAY
(BSTR)

The data is organized as a one-dimensional
SAFEARRAY with the BSTR type as elements.

The elements represent property value facet names
available in model data.

The elements are ordered to match the order in the
Model_Property_Value_Facet_Ids.

The following table lists available property facets:

Property
Name

Typ-
e

Description

Hardened 5 Indicates that a value will not change due to inheritance. For
example, a name for a foreign key attribute in a child entity.

AutoCalculated 3 Indicates that a value is auto-calculated by the tool. For example,
cardinality is auto-calculated by default. In this case, the auto-cal-
culated facet is set to true.

301

Application.Modeling.Physical Category

The following table describes the Application.Modeling.Physical category, which describes
the features associated with physical modeling in erwin DM:

Property
Name

Type Description

DBMS_
Brand_
And_Ver-
sion_List

SAFEARRAY
(Long)

The data is organized as a one-dimensional SAFEARRAY with
the Long type as elements.

The elements are grouped into subsets of three. The first
member of the subset contains a DBMS brand identifier, the
second member is the major version value, and the last mem-
ber is the minor version value.

302

Application.Persistence Category

The Application.Persistence category describes the features associated with persistence sup-
port in erwin DM. There are no properties in this category.

303

Application.Persistence.FileSystem Category

The following table describes the Application.Persistence.FileSystem category, which
describes the features associated with the file system:

Property Name Type Description

Current_Directory BSTR Absolute path for the current local directory.

304

Application.Persistence.Mart

The following table describes the Application.Persistence.Mart category, which describes the
features associated with persistence support in erwin Data Modeler Workgroup Edition:

Property Name Type Description

Mart_Con-
nection_Types

SAFEARRAY
(BSTR)

Enumerate mart supported database
connection types.

305

Property Bag for Model Directory and Model Directory Unit

This Property Bag provides access to the properties of the Model Directory and the Model
Directory Unit objects. The PropertyBag property for both the ISCModelDirectory interface
and the ISCModelDirectoryUnit interface populates the bag with the set of current prop-
erties. The same property of these interfaces allows modification of directory (if it is not
read-only) or directory unit attributes. The contents of the bag can have one of two avail-
able forms, either native format or as a string based on the optional parameter of the Prop-
ertyBag property of ISCModelDirectory and ISCModelDirectoryUnit. The client can populate
the bag in either of these two forms. Different forms can be mixed in the same instance of
the bag.

Not all properties that exist in the directory or directory unit have to be present in the bag
when it is submitted. All property data as well as property names are validated by the API,
and all are either accepted or rejected. The rejection forces a method call to fail. If the bag
includes properties that are read-only at the moment, for example, the Locator property,
then such properties are ignored and do not affect validation of the bag data.

The following table lists the Property Bag properties and data types for the Model Directory:

Property
Name

Type Read-
only

Description

Directory_
Name

BSTR No Returns a directory name without the path information.

Applying a new value renames a directory.

For the mart root directory, this is a repository name. The
property does not allow the modification of the repository
name.

Locator BSTR Yes Location of a directory including absolute path and para-
meters. For a mart, parameters do not include password
information.

Directory_
Path

BSTR Yes Directory absolute path.

Created_By BSTR Yes Identification for a user that has created a directory. For
erwin Data Modeler Workgroup Edition only, a mart user

306

ID is used.

Created SAFEARRAY
(Long)

Yes Creation date of a directory. The time is an array of num-
bers in the following order:

Seconds after minute (0 - 59)

Minutes after hour (0 - 59)

Hours since midnight (0 - 23)

Day of month (1 - 31)

Month (0 - 11; January = 0)

Year (current year)

Day of week (0 - 6; Sunday = 0)

Day of year (0 - 365; January 1 = 0)

Updated SAFEARRAY
(Long)

Yes Update date of a directory. The time is an array of numbers
in the following order:

Seconds after minute (0 - 59)

Minutes after hour (0 - 59)

Hours since midnight (0 - 23)

Day of month (1 - 31)

Month (0 - 11; January = 0)

Year (current year)

Day of week (0 - 6; Sunday = 0)

Day of year (0 - 365; January 1 = 0)

Description BSTR No A directory description. This is only for erwin Data
Modeler Workgroup Edition.

The following table lists the Property Bag properties and datatypes for the Model Directory
Unit:

Property
Name

Type Read-
only

Description

Directory_
Unit_Name

BSTR No Returns a directory unit name without path information.

Applying a new value renames a directory unit.

307

Locator BSTR Yes Location of a directory unit including absolute path and para-
meters. For a mart, parameters do not include password
information.

Directory_
Unit_Path

BSTR Yes Directory unit absolute path.

Created_By BSTR Yes Identification for a user that has created a unit. For erwin
Data Modeler Workgroup Edition only, a mart user ID is
used.

Created SAFEARRAY
(Long)

Yes Creation date of a directory. The time is an array of num-
bers in the following order:

Seconds after minute (0 - 59)

Minutes after hour (0 - 59)

Hours since midnight (0 - 23)

Day of month (1 - 31)

Month (0 - 11; January = 0)

Year (current year)

Day of week (0 - 6; Sunday = 0)

Day of year (0 - 365; January 1 = 0)

Updated SAFEARRAY
(Long)

Yes Update date of a directory. The time is an array of numbers
in the following order:

Seconds after minute (0 - 59)

Minutes after hour (0 - 59)

Hours since midnight (0 - 23)

Day of month (1 - 31)

Month (0 - 11; January = 0)

Year (current year)

Day of week (0 - 6; Sunday = 0)

Day of year (0 - 365; January 1 = 0)

Description BSTR Yes A directory description. This is only for erwin Data
Modeler Workgroup Edition.

308

Is_Tem-
plate

Boolean Yes Returns TRUE if a unit model is a template.

Property Bag for Persistence Units and Persistence Unit Col-
lections

This Property Bag provides access to the properties of a persistence unit. An empty Property
Bag can be obtained through a call to the CoCreateInstance of the COM API. The client pop-
ulates a bag and then submits it as a parameter for the Create method of the ISCPer-
sistenceUnitCollection interface. Alternatively, the present state of persistence unit
properties can be retrieved through the PropertyBag property of ISCPersistenceUnit. The
retrieved value can be reviewed, modified, and submitted back through the PropertyBag
property of the same interface. The contents of the bag can have one of two available
forms: native format or as a string based on the optional parameter of the PropertyBag
property of the ISCPersistenceUnit. The client can populate the bag in either of these two
forms. Different forms can be mixed in the same instance of the bag.

Not all properties that exist in the unit have to be present in the bag when it is submitted. All
property data as well as property names are validated by the API and either all are accepted
or all are rejected. The rejection forces a method call to fail. If the bag includes properties
that are read-only at the moment, for instance, the model type for a erwin DM model when
the model was created previously, then such properties are ignored and will not affect val-
idation of the bag data.

ISCPersistenceUnit::PropertyBag Arguments (Get Function)

Here is the signature for the PropertyBag (Get) function:

 ISCPropertyBag * PropertyBag(VARIANT List, VARIANT AsString)

The following table contains the valid arguments for the PropertyBag (Get) function:

Para-
meter

Valid
Type/Value

Description

309

List
[optional]

VT_BSTR
Semicolon sep-
arated list of
properties

Provides a list of the unit properties. If the list
is provided, only listed properties are placed
in the returned property bag.

List
[optional]

Empty Requests a complete set of properties.

AsString
[optional]

VT_BOOL
TRUE or FALSE

If set to TRUE, it requests that all values in the
bag be presented as strings. The default is
FALSE and all values are in their native
format.

AsString
[optional]

Empty All values in the property bag are presented
in native format.

ISCPersistenceUnit::PropertyBag Arguments (Set Function)

Here is the signature for the PropertyBag (Set) function:

 void PropertyBag(VARIANT List, VARIANT AsString, ISCPropertyBag *
propBag)

The following table contains the valid arguments for the PropertyBag (Set) function:

Parameter Valid
Type/Value

Description

List
[optional]

Not used

AsString
[optional]

Not used

propBag ISCPropertyBag
*

A pointer on a property bag with the unit
properties to process

Property Bag Contents for Persistence Unit and Persistence Unit Collection

The following table lists the Property Bag properties and datatypes recognized by erwin DM:

310

Property
Name

Type Read-
only

Description

Locator BSTR Yes Returns the location of the persistence unit, such as
file name. Not available for models without a per-
sistence location, such as new models that were
never saved.

Disposition BSTR Yes Returns the disposition of the persistence unit, such
as read-only.

Persistence_
Unit_Id

SC_
MODELTYPEID

No Retrieves and sets an identifier for the persistence
unit.

A new identifier can be assigned to the existing per-
sistence unit. In this case, the old identifier will be
placed in the persistence unit's branch log.

Note: For more information, see the description of
the Branch Log property.

Branch_Log SAFEARRAY
(SC_
MODELTYPEID)

After
create

Retrieves and sets the branch log of the persistence
unit identifiers. A persistence unit retains its log of
identifiers.

erwin DM uses the branch logs of the persistence
units for extended identification match.

The API uses only the most current identifier for
searching in the Persistence Unit Collection.

Model_Type Long After
create

Retrieves and sets the type of the persistence unit,
such as logical, logical/physical, and physical models.
Can be set when a persistence unit is created; after
that the property becomes read-only.

Available values are:

1 - Logical, for logical models. This is the default if
no value is provided.

2 - Physical, for physical models.

3 - Combined, for a logical/physical model.

311

Target_
Server
Target_
Server_Ver-
sion
Target_
Server_
Minor_Ver-
sion

Long After
create

Retrieves and sets the target database properties for
physical and logical-physical models. Can be set
when a persistence unit is created; after that the
property becomes read-only.

Note: For available values for the Target_Server prop-
erty, see the next table.

Storage_
Format

Long After
create

Retrieves and sets the storage format, which has a
value of Normal for a model and a value of Template
for a model template. Can be set when a persistence
unit is created; after that the property becomes read-
only.

Available values are:

4012 Normal, for a regular model. This is the
default if no value is provided.

4016 Template, for a template model.

Active_
Model

Boolean No TRUE if the persistence unit represents the current
model and is active in the erwin DM user interface.
Not available when using the API in standalone mode.

Hidden_
Model

Boolean No TRUE if a model window with the persistence unit
data is not visible in the erwin DM user interface. Not
available when using the API in standalone mode.

Active_Sub-
ject_Area_
and_Stored_
Display

SAFEARRAY
(BSTR)

No Reports names of active Subject Area and Stored Dis-
play model objects. This indicates the Subject Area
and Stored Display that erwin DM shows on the
screen. The returned value is a safe array with two
elements. The first element is a name for the active
Subject Area and the second element is for the
Stored Display.

Providing a new set of Subject Area and Stored Dis-

312

play names can change this selection. The change
has an effect immediately if the model is active in
the erwin DM user interface or in the next model
opened by the erwin DM user interface.

Optionally, to change a selection, you need only a
BSTR with a name for a new Subject Area. From the
Subject Area you provide, the API chooses the first
Stored Display as active.

The Target_Server property is a vector that consists of three members. The first member of
the vector contains a DBMS brand identifier, the second member is the major version value,
and the last member is the minor version value.

The following table lists DBMS brand identifiers for the Target_Server property. The table
also lists the brand names that are used when the identifier is presented as a string:

DBMS Brand DBMS Brand Name DBMS Brand ID

Db2 for i Db2 1075859019

Db2 for LUW Db2 UDB 1075858977

Db2 for z/OS FoxPro 1075858978

Hive Hive 1075859187

Informix Informix 1075859006

MySQL Ingres 1075859129

Netezza Netezza 1075918978

ODBC/Generic ODBC 1075859009

Oracle Oracle 1075858979

PostgreSQL PostgreSQL 1075918977

Progress Progress 1075859010

Redshift Redshift 1075918979

SAS SAS 1075859013

SQL Server SQL Server 1075859016

SQL Azure SQL Azure 1075859180

313

SAP ASE Sybase 1075859017

SAP IQ Sybase 1075859130

Teradata Teradata 1075859018

314

Property Bag for Session

This Property Bag provides additional information to the BeginNamedTransaction function
of the ISCSession interface and can be submitted as the second optional argument of the
function. The contents of the bag can have one of two available forms: native format or as a
string. The client can populate the bag in either of these two forms. Different forms can be
mixed in the same instance of the bag.

Not all properties have to be present in the bag when it is submitted. All property data as
well as property names are validated by the API, and all are either accepted or rejected.
The rejection forces a method call to fail.

The transaction properties are in effect at the initiation of an outer transaction and are con-
fined to the scope of the transaction.

The following table lists the Property Bag properties and datatypes for the
BeginNamedTransaction:

Property
Name

Type Read-
only

Description

History_
Tracking

Boolean No TRUE Indicates that all historical information generated dur-
ing the transaction will be marked as the API event. A TRUE
value is assumed if the property is not provided.

FALSE Uses the standard erwin DM mechanism of history
tracking.

History_
Description

BSTR No When the History_Tracking property is TRUE, it provides the con-
tent of the history event Description field.

315

Location and Disposition in Model Directories and Persistence
Units

The API describes the location of Persistence Units and their disposition in persistence stor-
age facilities with the Locator and Disposition properties. This information is required by
some of the API methods and is also accessible using Property Bags. Examples of persistence
storage for erwin DM models are file system and mart.

316

Locator Property

The following table describes the syntax supported by the Locator property:

Syntax Arguments
 [provider://]pathinfo[?param=value[;param=value]…n] provider: This is a

type of persistence
storage. Use erwin
to specify file sys-
tem, and use mart
for a mart. If this is
skipped, erwin is the
default.

pathinfo: This is the
path to the storage
location, which is
either a file path or
the mart path.

param: This is either
a parameter name
or a keyword.

value: This is a text
string.

There are no param keywords defined for the file system persistence storage.

A list of Locator param keywords for use with the mart type of provider for models stored in
a mart is described in the following table.

Note: There is a special arrangement for the erwin Data Modeler Workgroup Edition Loc-
ator. Part of the Locator string with params can be omitted if an application has connections
open with one or more mart repositories. In this case, the params part of the Locator string
can have only partial information or not be present at all, as long as it is clear to which con-
nection from the available list it refers.

317

Currently, erwin Data Modeler Workgroup Edition allows only one open connection to a
mart repository at any given time. Therefore, it is possible, after establishing a connection,
to omit the params part of the Locator string completely and to provide the model path
information only.

The following table provides a list of Locator param keywords for use with the mart type of
provider for models stored in a mart:

Complete
Name

Abbreviation Description

Server SRV Location where the application server exists.

Trusted
Connection

TRC This is an optional parameter. When set to YES--it instructs to use
the Windows authentication model for login validation. When set
to No or when the value is not mentioned--it instructs to use user-
name and password to log in, in which case the UID and PSW
keywords must be specified.

Version
Number

VNO Version number of the model.

User UID Login user name. Do not specify UID when using Windows
Authentication.

Password PSW User login password. Do not specify PSW if you use Windows
Authentication (Trusted Connection set to YES).

Port Num-
ber

PRT Port number to which the application server listens.

Application
Name

ASR Name of the application server.

IIS IIS This is an optional parameter. YES--connects to MartServer using
IIS. No or not mentioned about this property--instructs to use
PortNo to connect MartServer, in which case PortNo must be spe-
cified.

The following table describes various scenarios in which you can use the Locator param
keyword along with the mart type of provider for models stored in a mart:

318

Sce-
nari-
o

Description

erw-
in
Dat-
a
Mo-
dele-
r
Wor-
kgr-
oup
Edi-
tion

Your Libraries/ Models are stored in the Mart under the catalog named Mart .
Mart is the default name, you can change it. A library can contain a library. If a library
that is specified in path does not exist in the Mart, the library is created at the time of
saving the model and the model is stored in that library.

If you have a model named MyModel located in MyLib, which is in an SSL secured
Mart, you can use the following:

mart://<Cat-
logName>/<Library-
name>/<ModelMName>?VNO-
=<ve-
rsion-
no>;TRC-
=NO;SR-
V=<Serve-
erLocation>;PRT=<portno>;ASR=<ApplicationServerName>;SSL=<YES/NO>;UID= <user
id>;PSW=<password>

For example:

 mart://Mart/MyLib/MyModel?VNO-
=1;TR-
C=NO;II-
S=NO;SR-
V=<Serve-
rLoca-
tion>;PRT=<portno>;ASR=<ApplicationServerName>;SSL=<YES>;UID=
<user id>;PSW=<password>

Loc-
al
driv-
e

If you have a model called mod.erwin located in the models directory on the C drive,
you can use the following:

 C:\models\mod.erwin

319

Disposition Property

The Disposition parameter provides optional information for the API to access model data
specified by the Locator parameter.

The following table describes the syntax supported by the Disposition property:

Syntax Arguments
 param=value[;param=value]…n param: This is either a parameter name or

a keyword.

value: Yes/No/specified values for some
params.

The following table lists Disposition param keywords for use with the erwin type of provider,
such as for models stored in the file system:

Complete
Name

Abbreviation Description

Read Only RDO Requests read-only access to a file. Available for the Persistence
Unit Collection Add method.

Full access to a persistence unit is possible if the parameter was
not specified.

Overwrite
File

OVF Overwrites an existing file upon Save. Available for the Per-
sistence Unit Save method. There is no overwrite if the para-
meter is not specified.

Main Sub-
ject Area

MSA Keep the main Subject Area

Value: Yes/No

Diagram DGM Keep the diagrams for the main Subject Area

Value: Yes/No

Theme THM Apply a default theme to each diagram

Value: Yes/No

Transforms XFM Transform object view should be converted into a specified type.

320

The param values are:

 1. XFM=RESOLVE (default value if the parameter was not
specified)

[It converts the model transform objects into Target object
view]

 2. XFM=REVERSE [It converts the model transform objects
into Source object view)]

 3. XFM=CONVERT [It converts the Model transform
objects into current view in which the model is having]

For example: The disposition parameter is as follows: (RDO-
O=Yes;MSA=Yes;DGM=NO;THM=Yes;XFM= REVERSE)

The following table lists Disposition param keywords for use with the mart type of provider
for models opened from, or stored in a mart:

Complete
Name

Abbreviation Description

Read Only RDO Request a read only access to a model while opening it from
Mart.

Overwrite
Session

OVS Overwrite an existing session. If the parameter is not specified, it
uses the existing session; if not, it creates a session.

Overwrite
Model

OVM Overwrite an existing model in a mart. Available for the Per-
sistence Unit Save method. There is no overwrite if the parameter
is not specified.

321

erwin DM Metamodel

This appendix lists information regarding the erwin DM metamodel.

Note: For more information, see the HTML document erwin Metamodel Reference, in the
Metamodel Reference Bookshelf located in the erwin Data Modeler installation folder.

This section contains the following topics:

Metadata Element Renaming
Metadata Organization
XML Schema

322

Metadata Element Renaming

Metadata element renaming affects object types, property types, and API-specific property
types. In r7.3, much of the metadata in erwin DM was renamed. These name changes fall
into two categories:

Consistent naming and better representation of the model data. For example, the
property type For was renamed to For_Character_Type.

Replacement of space characters with underscores in all metadata element names.
Prior to erwin DM r7.3, both object type and property type names accessed using the
API contained spaces, but when saving to XML format, those same names used under-
scores. To remove this inconsistency, all space characters within such names have
been replaced by underscores.

Overall, this change is transparent and will not affect your day-to-day work. Awareness of
this change, however, is important if you use the API and the new ODBC interface, and have
some familiarity with the pre-r7.3 metadata names. Existing API applications and scripts
must be updated to account for any new metadata names before use with erwin DM. To
assist you with this updating process, the following CSV files are provided with the erwin DM
installation in the <Program Files>\erwin\Data Modeler r9\metadata changes:

Renamed Metadata (SCAPI).csv

Provides a list of the full set of changed metadata names. It is a two column CSV file
that contains the old name, new name pairs.

Renamed Metadata (XML).csv

Provides the subset of metadata names that appear as changed in XML files.

Note: Not included in this file are those metadata names where the only change was
the replacement of space characters with underscores, since erwin DM's XML format
already uses underscores in object type names and property type names.

Renamed SCAPI Properties.csv

Provides a list of the API-only property names that were renamed.

323

Metadata Organization

The metadata includes object and property classes, object aggregations, and property asso-
ciations.

Object classes

Define the type of objects that may occur within a model such as an entity class, an
attribute class, or a relationship class.

Property classes

Define the type of properties an object may have such as the Name property, Com-
ment property, or Parent_Domain_Ref property.

Object aggregations

Identify an ownership relationship between classes of objects, such as a model that
owns entities, or entities that own attributes, and so on.

Property associations

Define property usage by object classes. For example, the metadata includes property
associations for every object class that has the Name property.

The following diagram shows the organization of the metadata:

324

Metamodel Elements

erwin DM organizes data as a group of linked model sets. The model sets are arranged in a
tree-like hierarchy with a single model set at the top.

The top model set contains the bulk of the modeling data. The API uses the abbreviation
EMX to identify the top model set.

The EMX model set owns a secondary model set, abbreviated as EM2, which contains user
interface settings and user options for erwin DM services such as Forward Engineering, Com-
plete Compare, and so on.

The API clients access the model data by constructing a session and connecting it to a model
set using the Session component.

A model set contains several levels of data. It contains the data the application manipulates,
such as entity instances, attribute instances, relationship instances, and so on.

The model set also contains metadata, a description of the objects and properties that may
occur within the application's data.

Metadata Tags

Each metadata object may include one or more tags. A tag is a metadata object property
that conveys certain descriptive meta information, such as if an object class is logical, phys-
ical, valid for a specific target DBMS, and so on.

Note: A tag on an object aggregation overrides the identical tag set on the associated
owned object class. A tag on a property association overrides the identical tag set on the
associated property class.

325

The following table lists some of the EMX metadata tags:

Tag Name Datatype Description

tag_Bit_
Field_Values

…

tag_Bit_
Field_Val-
ues_2

String Describes valid values for a bit field property. A combination of val-
ues from the description list can be used as a value for the prop-
erty.

The descriptions are grouped as follows:

{<value>|<string equivalent>|<internal>}

DBMS_
Brands_
And_Ver-
sions

Integer,
vector

Defines conditions when an object or property class is available for
physical modeling with the specific DBMS. Assumes that the tag_Is_
Physical has a TRUE value.

Absence of the tag indicates that the class is available for all DBMS
targets, but only if tag_Is_Physical has a TRUE value.

A NULL value for the tag indicates that the class is not available for
any DBMS.

DBMS brand IDs are described in the next table.

DBMS_Is_
Represented

Integer,
vector

Defines conditions when an object or property class represents a
concept in the specific DBMS. Assumes that the DBMS_Brands_
And_Versions tag is valid for the class.

Absence of the tag indicates that the class is available for all DBMS
targets, but only if the DBMS_Brands_And_Versions tag is valid for
the class.

A NULL value for the tag indicates that the class is not available for
any DBMS.

DBMS brand IDs are described in the next table.

DBMS_Is_
Top_Level_
Object

Integer,
vector

Defines conditions when an object class is considered top level,
such as when it has a CREATE or DROP statement associated with it
for the specific DBMS. Assumes that the DBMS_Is_Represented tag
is valid for the class.

Absence of the tag indicates that the class is available for all DBMS
targets, if the DBMS_Is_Represented tag is valid for the class.

326

A NULL value for the tag indicates that the class is not a top level
object for any DBMS.

DBMS brand IDs are described in the next table.

tag_Enum_
Values

…

tag_Enum_
Values_10

String Describes valid values for an enumerated property. Only one value
from the description list can be used as a value for the property.

The descriptions are grouped as follows:

{<value>|<string equivalent>|<internal>}

tag_Is_Font_
Or_Color

Boolean TRUE for classes responsible for model data visualization.

tag_Is_For_
Data_Move-
ment

Boolean TRUE for an object or property class that is available for dimen-
sional and data warehouse modeling.

tag_Is_
Graphic_
Data

Boolean TRUE for classes responsible for model data visualization.

tag_Is_
Logical

Boolean TRUE for an object or property class that is available for logical
modeling.

tag_Is_Phys-
ical

Boolean TRUE for an object or property class that is available for physical
modeling.

tag_Holds_
User_Set-
tings

Boolean TRUE for classes responsible for storing options for erwin DM fea-
tures.

DBMS specific tags, such as DBMS_Brands_And_Versions, DBMS_Is_Represented, and
DBMS_Is_Top_Level_Object, are vectors and organize data in groups of triplets as described
below:

First element

Specifies the DBMS brand ID.

Second element

Specifies the minimum version level for the DBMS, multiplied by 1000.

327

Third element

Specifies the maximum version level for the DBMS, multiplied by 1000; 999000 indic-
ates the absence of a maximum level.

For example, consider the property Oracle_Index_Partition_Type. It contains a DBMS-spe-
cific tag, DBMS_Brands_And_Versions. This tag contains three elements specific for this
property: 1075858979, 8000, 999000. The first element, the DBMS brand ID, is for Oracle,
which is 1075858979. The second element, the minimum version level for this DBMS, mul-
tiplied by 1000, is 8000. This means the minimum DBMS version level for this DBMS, which
is Oracle, is 8.0. The third element, the maximum version level for this DBMS, is 999000,
which means there is no maximum version level for this DBMS.

The following table lists DBMS brand IDs:

DBMS Brand DBMS Brand ID

Db2 for i 1075859019

Db2 for LUW 1075858977

Db2 for z/OS 1075858978

Hive 1075859187

Informix 1075859006

MySQL 1075859129

Netezza 1075918978

ODBC/Generic 1075859009

Oracle 1075858979

PostgreSQL 1075918977

Progress 1075859010

Redshift 1075918979

SAS 1075859013

SQL Server 1075859016

SQL Azure 1075859180

SAP ASE 1075859017

SAP IQ 1075859130

328

Teradata 1075859018

Abstract Metadata Objects

The metadata organization makes use of generalizations with the ability to derive a spe-
cialized object class from an abstract object class using generalization association. Spe-
cialized classes can then be marked as abstract, and then they can be used as a source for
further specializations.

Only instances of the concrete, non-abstract object classes may occur within the applic-
ation's data. erwin DM uses the generalization mechanism to flatten metadata by rep-
licating aggregations, associations, and tags from the abstract object classes in the concrete
object classes.

Metamodel Classes

A unique metadata class identifies what type of metadata a model set contains.

EMX Class Model Set

Contains the bulk of model data such as entities and attributes. The class name is EMX
and the class identifier is the value defined in the Application Environment com-
ponent, category Application, property EMX_Metadata_Class.

EM2 Class Model Set

Stores additional data such as user interface settings and user options for erwin DM
services such as Forward Engineering and Complete Compare. The class name is EM2
and the class identifier is the value defined in the Application Environment com-
ponent, category Application, property EM2_Metadata_Class.

329

XML Schema

You can use the XML schema provided with this product to view metadata descriptions.

An XML schema is a document or a set of documents that defines the XML file's structure
and legal elements. XML schemas can be used to ensure that an XML file is syntactically cor-
rect and conforms to the defined schema. erwin DM provides such a schema and uses the
schema to validate XML files when they are opened in the tool.

The erwin DM installation places the complete set of XML schema files necessary for an
XML file validation into the \Doc directory. The schema files have .xsd extensions and are
described in the following list:

erwinSchema.xsd is the top level schema file.

UDP.xsd is the schema file for UDP definitions.

EMX.xsd is the schema file for object hierarchy.

EM2.xsd is the schema file for non-transactional data.

EMXProps.xsd is the schema file for object properties and UDP instances.

XML schemas contain descriptions of model object and property classes and define property
containment by object classes. Schema definitions for EMX and EM2 classes are provided.
XML schemas do not include deprecated classes.

The following diagram illustrates the five erwin DM XML schema files:

330

The schema files under the \Doc directory are not database-specific and represent the
entire erwin DM metamodel. The schema contains all possible objects and properties for all
valid database targets. If you need database-specific schema, those files are located in the
Doc\DBMS_schemas directory. Within the Doc\DBMS_schemas directory, there is a folder
for each supported target database. The database-specific schema files are stored in that
folder and only consist of objects and properties that are valid for the given database target.

Note: The XML schema that is in the \Doc directory is always used by erwin DM to validate
an XML file; the database-specific schema is not used. The database-specific schemas are
provided for documentation purposes and to assist third-party tool integrators to determine
the valid objects and properties for a given database target. An external XML validation tool
can be used to validate an XML file against a database-specific schema.

	Legal Notices
	Contents
	Introduction to API
	Major Features
	Typical Use Cases
	Standalone Client
	Add-in Component or Script

	API Components
	Overview
	Application Tier
	Model Directory Tier
	Sessions Tier
	Model Data Tier

	Access to Model Data
	Objects and Properties
	Object Identifiers
	Object Identifiers and Type Codes
	Properties, Property Flags, and Value Facets
	Scalar and Non-Scalar Property Values

	Collections and Automation
	_NewEnum Property of a Collection Object
	Default Properties
	Optional Parameter

	The API Sample Client
	Using the API Sample Client
	Register the Add-in Component
	o6459

	erwin Spy
	How the erwin Spy Application Works

	API Tasks
	API Environment
	Creating the ISCApplication Object
	Application Properties
	ISCApplication Interface
	ISCApplicationEnvironment

	Accessing a Model
	Using the API as an Add-in Tool
	ISCApplication Interface
	ISCPersistenceUnitCollection Interface
	ISCPersistenceUnit Interface
	Property Bag Members for a Persistence Unit
	ISCPropertyBag Interface

	Using the API as a Standalone Executable
	Creating a Model
	ISCPersistenceUnitCollection Interface
	ISCPropertyBag Interface

	Opening an Existing Model
	ISCPersistenceUnitCollection Interface

	Opening a Session
	ISCSessionCollection Interface
	ISCSession Interface

	Accessing a Model Set
	ISCPersistenceUnit Interface
	ISCModelSet Interface
	ISCModelSetCollection Interface
	ISCSession Interface

	Accessing Objects in a Model
	ISCSession Interface
	ISCModelObjectCollection Interface
	ISCModelObject Interface
	Accessing a Specific Object
	ISCModelObjectCollection Interface

	Filtering Object Collections
	ISCModelObjectCollection Interface

	Accessing Object Properties
	Iteration of Properties
	ISCModelObject Interface
	ISCModelPropertyCollection Interface
	ISCModelProperty Interface

	ISCModelProperty Interface
	Iterating Over Non-Scalar Property Values
	ISCModelProperty Interface
	ISCPropertyValueCollection Interface
	ISCPropertyValue Interface

	Accessing a Specific Property
	ISCPropertyValueCollection Interface

	Filtering Properties
	ISCModelObject Interface

	Modifying the Model Using Session Transactions
	Begin Transaction
	ISCSession Interface

	Commit Transaction
	ISCSession Interface

	Creating Objects
	ISCModelObjectCollection Interface

	Setting Property Values
	Setting Scalar Property Values
	ISCModelProperty Interface

	Setting Non-Scalar Property Values
	ISCModelProperty Interface

	Deleting Objects
	ISCModelObjectCollection Interface

	Deleting Properties and Property Values
	ISCModelPropertyCollection Interface
	ISCModelProperty Interface
	Deleting Non-Scalar Property Values

	Saving the Model
	ISCPersistenceUnit Interface

	Accessing Metamodel Information
	ISCApplicationEnvironment Interface
	ISCSession Interface

	Closing the API
	ISCSession Interface
	ISCSessionCollection Interface
	Clearing Persistence Units
	ISCPersistenceUnitCollection Interface

	Error Handling
	ISCApplicationEnvironment

	Advanced Tasks
	Creating User-Defined Properties
	History Tracking
	ISCSession Interface

	API Interfaces Reference
	ISCApplication
	API Interfaces
	ISCApplicationEnvironment
	ISCApplicationEnvironment::PropertyBag Arguments

	ISCModelDirectory
	ISCModelDirectory::DirectoryExists Arguments
	ISCModelDirectory::DirectoryUnitExists Arguments
	ISCModelDirectory::IsOfType Arguments
	ISCModelDirectory::LocateDirectory Arguments
	ISCModelDirectory::LocateDirectoryUnit Arguments
	ISCModelDirectory::PropertyBag Arguments (Get Function)
	ISCModelDirectory::PropertyBag Arguments (Set Function)

	ISCModelDirectoryCollection
	ISCModelDirectoryCollection::Add Arguments
	ISCModelDirectoryCollection::Item Arguments
	ISCModelDirectoryCollection::Remove Arguments

	ISCModelDirectoryUnit
	ISCModelDirectoryUnit::IsOfType Arguments
	ISCModelDirectoryUnit::PropertyBag Arguments (Get Function)
	ISCModelDirectoryUnit::PropertyBag Arguments (Set Function)

	ISCModelObject
	ISCModelObject::CollectProperties Arguments
	ISCModelObject::IsInstanceOf Arguments

	ISCModelObjectCollection
	ISCModelObjectCollection::Add Arguments
	ISCModelObjectCollection::Collect Arguments
	ISCModelObjectCollection::Item Arguments
	ISCModelObjectCollection::Remove Arguments

	ISCModelProperty
	ISCModelProperty::DataType Arguments
	ISCModelProperty::RemoveValue Arguments
	ISCModelProperty::Value Arguments (Get Function)
	ISCModelProperty::Value Arguments (Set Function)
	ISCModelProperty::GetValueFacetIds Arguments
	ISCModelProperty::GetValueFacetNames Arguments
	ISCModelProperty::SetValueFacets Arguments

	ISCModelPropertyCollection
	ISCModelPropertyCollection::Add Arguments
	ISCModelPropertyCollection::HasProperty Arguments
	ISCModelPropertyCollection::HasPropertyFacets Arguments
	ISCModelPropertyCollection::Item Arguments
	ISCModelPropertyCollection::Remove Arguments

	ISCModelSet
	ISCModelSet::PropertyBag Arguments (Get Function)
	ISCModelSet::PropertyBag Arguments (Set Function)

	ISCModelSetCollection
	ISCModelSetCollection::Item Arguments

	ISCPersistenceUnit
	ISCPersistenceUnit::PropertyBag Arguments (Get Function)
	ISCPersistenceUnit::PropertyBag Arguments (Set Function)
	ISCPersistenceUnit::Save Arguments
	ISCPersistenceUnit::ReverseEngineer
	ISCPersistenceUnit::ForwardEngineer

	ISCPersistenceUnitCollection
	ISCPersistenceUnitCollection::Add Arguments
	ISCPersistenceUnitCollection::Create Arguments
	ISCPersistenceUnitCollection::Item Arguments
	ISCPersistenceUnitCollection::Remove Arguments

	ISCPropertyBag
	ISCPropertyBag::Add Arguments
	ISCPropertyBag::Name Arguments
	ISCPropertyBag::Value Arguments (Get Function)
	ISCPropertyBag::Value Arguments (Set Function)

	ISCPropertyValue
	ISCPropertyValue::ValueId Arguments
	ISCPropertyValue::Value Arguments

	ISCPropertyValueCollection
	ISCPropertyValueCollection::Item Arguments
	ISCPropertyValueCollection::Facet Arguments (Get Function)
	ISCPropertyValueCollection::Facet Arguments (Set Function)
	ISCPropertyValueCollection::RemoveFacet Arguments

	ISCSession
	ISCSession::BeginNamedTransaction Arguments
	ISCSession::CommitTransaction Arguments
	ISCSession::IsTransactionEmpty Arguments
	ISCSession::Open Arguments
	ISCSession::RollbackTransaction Arguments

	ISCSessionCollection
	ISCSessionCollection::Item Arguments
	ISCSessionCollection::Remove Arguments

	Enumerations
	SC_ModelDirectoryFlags
	SC_ModelDirectoryType
	SC_ModelObjectFlags
	SC_ModelPropertyFlags
	SC_SessionFlags
	SC_SessionLevel
	SC_ValueTypes

	Property Bag Reference
	Property Bag for Application Environment
	ISCApplicationEnvironment::PropertyBag
	Category Parameter Contains an Empty String
	Application Category
	Application.API Category
	Application.API.Features Category
	Application.API.MessageLog Category
	Application.Modeling Category
	Application.Modeling.Physical Category
	Application.Persistence Category
	Application.Persistence.FileSystem Category
	Application.Persistence.Mart

	Property Bag for Model Directory and Model Directory Unit
	Property Bag for Persistence Units and Persistence Unit Collections
	ISCPersistenceUnit::PropertyBag Arguments (Get Function)
	ISCPersistenceUnit::PropertyBag Arguments (Set Function)
	Property Bag Contents for Persistence Unit and Persistence Unit Collection

	Property Bag for Session

	Location and Disposition in Model Directories and Persistence Units
	Locator Property
	Disposition Property

	erwin DM Metamodel
	Metadata Element Renaming
	o6317
	XML Schema

