syslog-ng Premium Edition 7.0.17 Windows Event Collector Administration Guide #### Copyright 2019 One Identity LLC. #### **ALL RIGHTS RESERVED.** This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording for any purpose other than the purchaser's personal use without the written permission of One Identity LLC . The information in this document is provided in connection with One Identity products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of One Identity LLC products. EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT, ONE IDENTITY ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ONE IDENTITY BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ONE IDENTITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. One Identity makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. One Identity does not make any commitment to update the information contained in this document. If you have any questions regarding your potential use of this material, contact: One Identity LLC. Attn: LEGAL Dept 4 Polaris Way Aliso Viejo, CA 92656 Refer to our Web site (http://www.OneIdentity.com) for regional and international office information. #### **Patents** One Identity is proud of our advanced technology. Patents and pending patents may apply to this product. For the most current information about applicable patents for this product, please visit our website at http://www.OneIdentity.com/legal/patents.aspx. #### **Trademarks** One Identity and the One Identity logo are trademarks and registered trademarks of One Identity LLC. in the U.S.A. and other countries. For a complete list of One Identity trademarks, please visit our website at www.oneIdentity.com/legal. All other trademarks are the property of their respective owners. #### Legend **CAUTION:** A CAUTION icon indicates potential damage to hardware or loss of data if instructions are not followed. syslog-ng PE Windows Event Collector Administration Guide Updated - October 2019 Version - 7.0.17 ## **Contents** | Introduction | 4 | |------------------------------------------------------------|----| | Install the Windows Event Collector | 6 | | Generate SSL certificates for Windows Event Collector | 7 | | Configure event source computers | 12 | | Configure Windows Event Collector | 16 | | Configure syslog-ng PE | 22 | | Start/stop Windows Event Collector | 24 | | Message format in Windows Event Collector for syslog-ng PE | 25 | | Flow control | 26 | | Performance | 27 | | Limitations | 28 | | Troubleshoot Windows Event Collector | 29 | | WEC configuration example | 31 | | About us | 32 | | Contacting us | 32 | | Technical support resources | 32 | ## **Introduction** The Windows Event Collector (WEC) acts as a log collector and forwarder tool for the Microsoft Windows platform. It collects the log messages of Windows-based hosts over HTTPS (using TLS encryption and mutual authentication), and forwards them to a syslog-ng PE server. In Windows terminology, this tool allows you to define source-initiated push subscriptions, and have them forwarded to a syslog-ng PE server. For details on the limitations of WEC, see Limitations. Unlike the syslog-ng Agent for Windows, the Windows Event Collector is a standalone tool that does not require installing on the Windows-based host itself. This can be an advantage when your organization's policies restrict or do not allow the installation of third-party tools. Another difference between the Windows Event Collector tool and syslog-ng Agent for Windows is that WEC forwards logs only about Windows events, while syslog-ng Agent forwards both Windows event logs as well as files from Windows hosts to the syslog-ng PE server. The Windows Event Collector sits between your Windows hosts and your syslog-ng Premium Edition server, accepting log messages from the remote Windows side with WinRM and feeding them to syslog-ng Premium Edition 7.0. Figure 1: How Windows Event Collector works in syslog-ng PE 7.0 At a high level, this is how you can get Windows event logs to be forwarded to your syslogng Premium Edition server using the WEC tool: - 1. Configure Windows event source computers. - For details on how to configure your Windows hosts, see Configure event source computers. - 2. Set up the Windows Event Collector as the server that collects and forwards event logs. - For details on how to set up and configure the Windows Event Collector tool, see Install the Windows Event Collector, Generate SSL certificates for Windows Event Collector, and Configure Windows Event Collector. - 3. The Windows Event Collector accepts incoming event log subscription requests from the Windows hosts. - 4. The Windows Event Collector handshakes the event forwarding settings with the Windows hosts, for example, which events to forward. - 5. The Windows Event Collector accepts the forwarded event logs, and writes the raw logs to a Unix datagram socket. - syslog-ng PE reads the Unix datagram socket using a source called windowsevent(). For details on how to configure your syslog-ng PE server, see Configure syslog-ng PE. - 7. syslog-ng PE parses the logs into key-value pairs using the XML parser. For details on the XML parser, see "XML parser" in the Administration Guide. ## **Install the Windows Event Collector** #### **Prerequisites:** - syslog-ng PE version 7.0.6 or newer - glibc version 2.12 or newer glibc version 2.12 is available on all platforms supported by syslog-ng Premium Edition 7.0. However, in the case of Red Hat Enterprise Linux, an upgrade to version 6.9 or newer is required. The Windows Event Collector is bundled into the syslog-ng PE installers from version 7.0.6 onward. A SysV init script and a systemd service file are provided and installed automatically, so by installing syslog-ng PE, you also install WEC. However, syslog-ng-wec is not registered to start at boot. #### To install the Windows Event Collector - 1. To start syslog-ng-wec at boot, register the init script using the following commands: - On systemd-based systems: systemctl enable syslog-ng-wec - On SysV-based systems: chkconfig or update-rc.d For details on how to start syslog-ng-wec manually, see Start/stop Windows Event Collector. # **Generate SSL certificates for Windows Event Collector** When the Windows-based host and the Windows Event Collector start communicating for the first time, they authenticate each other by exchanging and verifying each other's certificates. The process begins with the Windows host requesting and verifying the WEC tool's certificates. After successful verification, the Windows host sends its own certificates for verification to WEC. #### TTP. If the Windows host fails to authenticate the WEC tool's certificates for some reason, check the Windows event logs for details. For details on which event logs to look at, see Troubleshoot Windows Event Collector. The example described in this section uses OpenSSL for certificate generation. Note, however, that you can generate certificates using the Windows Public Key Infrastructure (PKI). To generate the SSL certificates for WEC, complete the following steps: #### To generate SSL certificates for Windows Event Collector 1. Create two certificate template files for both the server and the client(s). #### NOTE: The templates shown here are examples only. Not all elements of the example *opts.cnf files are mandatory, for example, you do not need to define two DNS instances. The contents of server-certopts.cnf: ``` [req] default_bits = 4096 default_md = sha256 req_extensions = req_ext keyUsage = keyEncipherment,dataEncipherment basicConstraints = CA:FALSE ``` ``` distinguished_name = dn [req_ext] subjectAltName = @alt_names extendedKeyUsage = serverAuth,clientAuth [alt_names] DNS.1 = <1st DNS hostname of server (preferably FQDN)> ... DNS.<N> = <Nth DNS hostname of server (preferably FQDN)> IP.1 = <1st IP of server> ... IP.<N> = <Nth IP of server> [dn] ``` #### For example: ``` [req] default_bits = 4096 default_md = sha256 req_extensions = req_ext keyUsage = keyEncipherment,dataEncipherment basicConstraints = CA:FALSE distinguished_name = dn [req_ext] subjectAltName = @alt_names extendedKeyUsage = serverAuth,clientAuth [alt_names] DNS.1 = windowseventcollector.widgits DNS.2 = wec.widgits IP.1 = 10.64.10.2 [dn] ``` The contents of client-certopts.cnf: ``` [req] default_bits = 4096 default_md = sha256 req_extensions = req_ext keyUsage = keyEncipherment,dataEncipherment basicConstraints = CA:FALSE distinguished_name = dn ``` ``` [req_ext] subjectAltName = @alt_names extendedKeyUsage = serverAuth,clientAuth [alt_names] DNS.1 = <1st DNS hostname of client (preferably FQDN)> ... DNS.<N> = <Nth DNS hostname of client (preferably FQDN)> IP.1 = <1st IP of client> ... IP.<N> = <Nth IP of client> [dn] ``` #### For example: ``` [req] default_bits = 4096 default_md = sha256 req_extensions = req_ext keyUsage = keyEncipherment,dataEncipherment basicConstraints = CA:FALSE distinguished_name = dn [req_ext] subjectAltName = @alt_names extendedKeyUsage = serverAuth,clientAuth [alt_names] DNS.1 = windowsclient01.widgits DNS.2 = client01.widgits IP.1 = 10.64.10.11 [dn] ``` #### 2. Generate the certificate authority (CA): ``` $ openssl genrsa -out ca.key 4096 $ openssl req -x509 -new -nodes -key ca.key -days 3650 -out ca.crt -subj '<subject name for CA cert (must be formatted as /type0=value0/type1=value1/type2=..., characters may be escaped by \ (backslash), no spaces are skipped)>' ``` #### For example: ``` $ openssl genrsa -out ca.key 4096 $ openssl req -x509 -new -nodes -key ca.key -days 3650 -out ca.crt -subj '/C=AU/ST=Victoria/L=Melbourne/O=Internet Widgits Pty Ltd/OU=Operations/CN=Operations Root CA' ``` Place a copy of the ca.crt file in a directory of your choice. Take a note of the directory because you need to reference it in the cadir option of the WEC configuration file. 3. Save the thumbprint of the CA: ``` $ openssl x509 -in ca.crt -fingerprint -sha1 -noout | sed -e 's/\://g' ``` You will need the fingerprint to configure the event source computers that send log messages to Windows Event Collector. For details, see Configure event source computers. 4. Create the server certificate: #### NOTE: The Common Name must be the FQDN (or IP address) of the Windows Event Collector server. ``` $ openssl req -new -newkey rsa:4096 -nodes -out server.csr -keyout server.key -subj '<subject name for server cert (must be formatted as /type0=value0/type1=value1/type2=..., characters may be escaped by \ (backslash), no spaces are skipped)>' $ openssl x509 -req -in server.csr -out server.crt -CA ca.crt -CAkey ca.key - CAcreateserial -extfile server-certopts.cnf -extensions req_ext -days 365 ``` #### For example: ``` $ openssl req -new -newkey rsa:4096 -nodes -out server.csr -keyout server.key -subj '/C=AU/ST=Victoria/L=Melbourne/O=Internet Widgits Pty Ltd/OU=Operations/CN=windowseventcollector.widgits' $ openssl x509 -req -in server.csr -out server.crt -CA ca.crt -CAkey ca.key - CAcreateserial -extfile server-certopts.cnf -extensions req_ext -days 365 ``` 5. Create client(s') certificates: #### NOTE: The Common Name must be the FQDN (or IP address) of the client. \$ openssl req -new -newkey rsa:4096 -nodes -out client.csr -keyout client.key -subj '<subject name for client cert (must be formatted as /type0=value0/type1=value1/type2=..., characters may be escaped by \ (backslash), no spaces are skipped)>' \$ openssl x509 -req -in client.csr -out client.crt -CA ca.crt -CAkey ca.key CAcreateserial -extfile client-certopts.cnf -extensions req_ext -days 365 #### For example: \$ openssl req -new -newkey rsa:4096 -nodes -out client.csr -keyout client.key -subj '/C=AU/ST=Victoria/L=Melbourne/0=Internet Widgits Pty Ltd/OU=Operations/CN=windowsclient01.widgits' \$ openssl x509 -req -in client.csr -out client.crt -CA ca.crt -CAkey ca.key CAcreateserial -extfile client-certopts.cnf -extensions req_ext -days 365 6. Export the client(s') certificate(s) to the format recognized by the Windows Certificate Manager tool. \$ openssl pkcs12 -export -inkey client.key -in client.crt -certfile ca.crt out client.p12 # **Configure event source computers** #### **Prerequisites:** • Microsoft Windows 7 or newer, up to Windows Server 2019 When collecting event logs from Windows hosts, the Windows clients sending logs act as the event source computers. The WEC tool collects and forwards messages from the standard Windows eventlog containers. There is no restriction on the number of Windows hosts that can connect to the Windows Event Collector. To configure your event sources, complete the following steps. #### To configure event source computers - 1. Open the Microsoft Management Console (mmc.exe), select File > Add/Remove Snap-ins, and add the Certificates snap-in. - 2. Select Computer Account. - 3. Right-click the **Personal** node, and select **All Tasks > Import**. - 4. Find and select the client certificate (client*.p12) and import this file. - 5. The PKCS #12 archive contains the CA certificate as well. Move the CA certificate to the **Trusted Root Certification Authorities** node after the import. #### NOTE Make sure that you only move the CA certificate and not the client certificate. 6. Give NetworkService access to the private key file of the client authentication certificate: #### NOTE: Make sure that you modify the access rights of only the private key file of the client certificate and not the CA certificate. - a. In certmgr, right-click the client certificate, select **All Tasks > Manage Private Keys...**. - b. Add read permission to "NETWORK SERVICE". 🝒 File Action View Favorites Window Help Console Root Issued To Expiration Date Intended Purposi 10.140.1.12 Permissions for 10.140.1.12 private keys v 📋 Personal Certificates Security > 📔 Trusted Root Certification Authorities > 📋 Enterprise Trust Group or user names: > 📔 Intermediate Certification Authorities 🞎 SYSTEM > 🦺 Trusted Publishers > 🦲 Untrusted Certificates Administrators (WINDOWS-10-FOR-\Administrators) > 🦲 Third-Party Root Certification Author & LogonSessionId_0_78297676 (NT AUTHORITY) > 📋 Trusted People Client Authentication Issuers > Preview Build Roots Add... Remove > 🧰 Remote Desktop Permissions for NETWORK SERVICE > 📋 Smart Card Trusted Roots Allow Deny > 🦺 Trusted Devices Full control > 📋 Windows Live ID Token Issuer Read **~** Special permissions For special permissions or advanced settings, click Advanced. Advanced ΟK Cancel Apply Figure 2: Adding read permission to "NETWORK SERVICE" #### 7. To forward security logs: - a. In CompMgmt.msc, under Local Users and Groups, click Groups > Event Log Readers to open Event Log Readers Properties. - b. Add the "NETWORK SERVICE" account to the **Event Log Readers** group. Figure 3: Adding the "Network Service" account to the Event Log Readers group. - c. Reboot the client computer. - 8. Run the following commands from an elevated privilege command prompt: ``` winrm qc -q winrm set winrm/config/client/auth @{Certificate="true"} ``` - 9. Open gpedit.msc. - Under the Computer Configuration node, expand the Administrative Templates node, then expand the Windows Components node, and then select the Event Forwarding node. - 11. Select the **SubscriptionManagers** setting and enable it. Click the **Show** button to add a subscription (Generate SSL certificates for Windows Event Collector): ``` Server=https://<FQDN of the collector>:5986/wsman/SubscriptionManager/WEC,Refresh=<Refresh interval in seconds>,IssuerCA=<Thumbprint of the root CA> ``` #### For example: Server=HTTPS://wec.balabit:5986/wsman/SubscriptionManager/WEC,Refresh=60,IssuerCA=A814E609311FD3A89FFD0297974524E4F2D2BA9D 🜉 Configure target Subscription Manager 🔚 Configure target Subscription Manager Previous Setting Comment: O Not Configured Enabled O Disabled Supported on: At least Windows Vista Options: Help: This policy setting allows you to configure the server address, Subscription Managers refresh interval, and issuer certificate authority (CA) of a target Subscription Manager. ou can configure the Source Show Contents DN (Fully Qualified Domain subscription specifics. SubscriptionManagers ng the HTTPS protocol: Value ionManager/WEC,Refresh=<Re Server=HTTPS://server:5986/wsman/SubscriptionManager/WEC;Refresh=3,lssuerC A=<Thumb print of the client using the HTTP protocol, use this policy setting, the Event ecified. Cancel OΚ Cancel Figure 4: Adding the subscription in SubscriptionManagers #### NOTE: If you wish to set up multiple subscriptions because you want to forward Windows events to multiple event collectors (such as WEC), then you can do that here. # **Configure Windows Event Collector** Once you have configured your event source computer(s), the next step is to configure your event collector, in this case, the Windows Event Collector for syslog-ng PE. #### NOTE: The configuration file of WEC is YAML based. Note that YAML uses spaces, not tabs, for indentation. To configure WEC, use the following options. For an example wec.yaml file, see WEC configuration example. #### server | Type: | string | |----------|--------| | Default: | N/A | *Description:* The hostname, IP address, or FQDN of the server where WEC is running. It must match the Common Name of the SSL certificate. #### port | Type: | integer | |----------|---------| | Default: | 5986 | *Description:* The port where the server running WEC is listening. #### keyfile | Type: | string | |----------|--------| | Default: | N/A | *Description:* The path to the file that contains the unencrypted private key of the server running WEC. The file is in PEM format. #### certfile | Type: | string | |----------|--------| | Default: | N/A | *Description:* The path to the file that contains the X.509 certificate of the server running WEC. The file is in PEM format. #### cadir | Type: | string | |----------|--------| | Default: | N/A | *Description:* The path to the directory that contains the trusted CA certificates in PEM format. #### log | Type: | map | |----------|-----| | Default: | N/A | Description: The options to specify how to handle the internal logs of WEC: - level - file WEC sends internal log messages to stderr. You can also optionally specify a file to send logs to (in parallel with stderr). If you are using a systemd platform and start WEC using systemct1, then stderr is redirected to systemd-journal, and this is where you will find the internal logs of WEC. #### level | Type: | debug info | |----------|------------| | Default: | info | Description: The application log level of WEC. Possible values are: • debug: Information with the most details, useful when debugging WEC and diagnosing issues. • info: Basic information about the initialization of WEC. Following initialization, no information is displayed on screen, unless an issue occurs. #### file | Type: | string | |----------|--------| | Default: | N/A | *Description:* The path to the file where WEC should write internal log messages. The log file is automatically created by syslog-ng PE. You can send this file to syslog-ng using a file() source. #### eventdestination | Type: | map | |----------|-----| | Default: | N/A | Description: The options to specify how to store the event logs that are forwarded to WEC: - file - unixdatagram - queuesize #### file | Type: | string | |----------|--------| | Default: | N/A | *Description:* The path to the file where WEC should write the events received from the Windows host(s). Use this option for debug purposes only, when you wish to check what WEC is sending to syslog-ng PE. It is possible to log both to a file and a Unix datagram socket in parallel. #### unixdatagram | Type: | string | |----------|--------| | Default: | N/A | *Description:* The path to the Unix datagram socket receiving the Windows events. WEC writes the received events to the Unix datagram socket specified here. The listening socket is automatically created by syslog-ng PE. It is possible to log both to a file and a Unix datagram socket in parallel. #### queuesize | Type: | integer | |----------|---------| | Default: | 10000 | Description: The number of events that the destination memory queue can store. Note that the main purpose of queuesize is to speed up the writing of data into memory and smooth out peaks. It is recommened to use the default value for this option. For more information about flow control, see Flow control. #### subscriptions | Type: | map | |----------|-----| | Default: | N/A | Description: The options related to the subscriptions you have set up on WEC: - name - computers - contentformat - heartbeats - connectionretry - batchsizelimit - batchtimeoutlimit - queries - readexistingevents #### NOTE You can set up multiple subscriptions to events coming from the same Windows host. If an event matches more than one subscription, the event log comes in to WEC as many times as there is a match. #### name | Type: | string | |----------|--------| | Default: | N/A | Description: The unique name of the subscription in WEC. computers | Type: | list of strings | |----------|-----------------| | Default: | N/A | *Description:* A list of strings that specifies the DNS names of the non-domain computers that are allowed to initiate subscriptions. Specifies the Windows hosts from which you want WEC to receive event logs. The names can be specified using the * and ? wildcards, for example, "*.mydomain.com" or "*". #### contentformat | Type: | Events RenderedText | |----------|---------------------| | Default: | N/A | Description: A value that specifies the format of the returned events. #### Possible values are: - RenderedText: Events are returned with the localized strings (such as event description strings) attached to the events - Events: Events are returned without any of the localized strings One Identity recommends setting this option to RenderedText. #### heartbeats | Type: | integer | |----------|---------| | Default: | N/A | *Description:* A value that specifies the heartbeat interval for the subscription in seconds. #### connectionretry | Type: | integer | |----------|---------| | Default: | N/A | *Description:* WEC attempts to reconnect to the Windows host(s) at the specified interval of time in seconds. #### batchsizelimit | Type: | integer | |----------|------------------------------------| | Default: | 0 (meaning that there is no limit) | *Description:* Specifies the maximum number of items for batched delivery in the event subscription. Set this value to 1 if you wish to perform tests or debugging. #### NOTE: This option is not enforced on the Windows host side. Windows is handling this value only as a recommendation. The only exception is the value 1. #### batchtimeoutlimit | Type: | integer | |----------|---------| | Default: | N/A | Description: Specifies the maximum latency allowed in delivering a batch of events (in seconds). #### NOTE: This option is not enforced on the Windows host side. Windows is handling this value only as a recommendation. #### queries | Type: | string | |----------|--------| | Default: | N/A | Description: Specifies the query string for the subscription. #### You can: - · type this value manually, or - copy this value from the XML tab of the Create Custom View pop-up window in Windows For examples of queries, check the following Windows blog posts: - Microsoft TechNet blog post Advanced XMI filtering in the Windows Event Viewer - Microsoft Developer Network article Wecutil.exe #### readexistingevents | Type: | true false | |----------|------------| | Default: | false | Description: When the value is true, all existing events are read from the subscription event source if the subscription in question has not been read yet. When the value is false, only future (arriving) events are delivered. If the subscription has a state in the persist file, this option will have no effect. # **Configure syslog-ng PE** #### **Prerequisites:** syslog-ng Premium Edition version 7.0.6 or newer. To enable syslog-ng PE to read and accept Windows events, you need to configure a source called windowsevent(). #### To configure syslog-ng PE - 1. Ensure that the default 5986 TCP port is accessible from WEC, as it is the Windows Event Collector that will initiate the event forwarding subscription toward the syslogng PE server. - 2. Configure the windowsevent() source. ``` source s_wec { windowsevent(); }; ``` The windowsevent() source takes the following options: • unix-domain-socket(): The path to the Unix domain socket to read messages from. The default value is /opt/syslog-ng/var/run/wec.sock. • prefix(): The prefix that you wish to append to the key-value pairs. The default value is ".windowsevent.". If you want to send Windows event logs to SDATA, then set prefix(".SDATA."). This can be useful, for example, when you forward Windows event logs to a syslog-ng Store Box. For more information on the windowsevent() source, see "windowsevent: Collecting Windows event logs" in the Administration Guide. 3. Define a complete log path in syslog-ng.conf to enable the windowsevent() source, s_wec. Otherwise, the WEC process will not run (connection refused). For example: ``` source s_wec { windowsevent(); }; log { source(s_wec); destination { file("/var/log/example.log" template("\$(format-json \ --scope \ dot-nv-pairs)\n")); }; }; ``` # **Start/stop Windows Event Collector** To start and stop the Windows Event Collector tool manually, use the following commands: #### systemd service for systemd-based systems: - Start WEC: systemctl start syslog-ng-wec - Stop WEC: systemctl stop syslog-ng-wec #### **SysV init for SysV-based systems:** - Start WEC: /etc/init.d/syslog-ng-wec start - Stop WEC: /etc/init.d/syslog-ng-wec stop To start WEC in the foreground, execute: wec -c /path/to/wec.yaml # Message format in Windows Event Collector for syslog-ng PE The Windows Event Collector for syslog-ng PE is supported for Windows 7 or newer platforms. Starting with Windows 7, event logging is XML-based, meaning that event log messages reach WEC in XML format. When these are forwarded to the syslog-ng PE server, syslog-ng PE parses them into key-value pairs using the XML parser. Once event log data is available in syslog-ng PE, you have the flexibility to modify and format data any way you want, using macros and rewrite rules. Note that while event log data as processed by the WEC tool may differ from the data collected and made available by the syslog-ng Agent for Windows, the Windows Event Collector tool provides you with greater freedom and flexibility when it comes to manipulating your raw data. ## Flow control The Windows Event Collector tool applies flow control to minimize event log loss. WEC regularly (in every second) polls the datagram socket that will receive the Windows events to check whether it exists already. Once the socket has been created (syslog-ng PE has started up), WEC connects to the socket and accepts the incoming connections from the Windows hosts. If the datagram socket does not exist, WEC refuses the incoming connections. If the socket exists (syslog-ng PE is running) but syslog-ng PE does not read the Unix datagram socket, WEC fills up the kernel buffer of the datagram socket and stores queuesize amounts of log messages in the memory. When all buffers are full, WEC stops reading messages from the HTTP connections to prevent message loss. The buffer size of a datagram socket is determined by certain Linux kernel parameters: the value of rmem_* (max/default) and the count of net.unix.max_dgram_qlen. #### Reliability WEC flags a message as delivered once it has put the message in the socket buffer. If syslog-ng PE does not read the socket for some reason (for example, because it is still flow-controlled) and syslog-ng PE is stopped, the contents of this socket (that is, the messages that are in the kernel buffer, unread by syslog-ng PE) will be lost. This is why in cases when a restart is necessary, it is recommended to stop the Windows Event Collector and syslog-ng PE in the following order: - 1. Windows Event Collector - 2. syslog-ng PE While it is not guaranteed that syslog-ng PE has read all sockets by the time you stop it, at least you can maximize the chances that it has. ## **Performance** Performance is dependent on the number of event log messages that the Windows hosts send to WEC and the capabilities of the XML parser. Our performance measurements indicate that syslog-ng PE's XML parser is capable of parsing 15,000-20,000 events/second. The exact capacity of the XML parser depends on the complexity of the Windows log messages, as well as the performance of the hardware that syslog-ng PE and WEC are running on. When the limit of 15,000-20,000 events/seconds is reached, a workaround is recommended. As the value set in the batchsizelimit parameter is treated only as a recommendation by the Windows hosts, there is no direct way to control the amount of messages arriving from the event source computers. A possible workaround is to launch multiple WEC servers and create multiple windowsevent () sources in syslog-ng PE. That way, you can distribute your Windows hosts across multiple WEC and syslog-ng PE servers, decreasing the load on individual servers. To run multiple WEC services per syslog-ng PE service, you need to create your own init script. This is because the init script that comes with WEC enables you to run only a single WEC service per syslog-ng PE service. ## **Limitations** The Windows Event Collector for syslog-ng PE currently has the following limitations: - Only source-initiated push subscriptions are supported (Windows hosts connect to the WEC server). - An advantage of this, however, is that this requires less firewall rules. - Only HTTPS and SSL certificate based authentication are supported. Kerberos authentication is not supported at the moment. - The compression of events is not supported. - The batchsizelimit and batchtimeoutlimit options are not enforced on the Windows host side: Windows is handling these values only as a recommendation. - On Windows 7 and Windows 2008 platforms, there is a known issue. After several reconnects (if WEC is restarted quickly), the remote sender can stop forwarding the logs for a certain period of time. In this case, restarting the Windows RM service can help. This issue can also occur between two Windows machines. It has been reported to Microsoft and is awaiting resolution. # Troubleshoot Windows Event Collector When you experience issues while using WEC, run WEC in debug mode to get detailed log messages. 1. Set the log level to debug: ``` log: level: "debug" ``` 2. Start WEC. At every refresh interval, the following debug messages should be displayed: ``` DEBUG subscriptionEndpoint {"clientAddress": "..."} DEBUG actionHandler {"messageID": "...", "action": "http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate"} DEBUG enumerate ``` This means that the client has connected and requested the subscription list. - 3. If you cannot see these messages within the refresh interval, you should check the following channels in the client's event viewer: - Applications and Services Logs\Microsoft\Windows\Eventlog-ForwardingPlugin - Applications and Services Logs\Microsoft\Windows\Windows Remote Management Some common error codes and their explanations: • 5004: A channel specified in the query XML does not exist or cannot be read on the Windows client. This can be caused by the "Network Service" not having permission to read the security log. Add the "Network Service" account to the **Event Log Readers** group, and restart the computer for changes to take effect. - 15008: The query XML of the subscription is invalid. - 995 (HTTP error 12186): The "Network Service" does not have permission to read the client certificate. • *HTTP error 403*: If everything is set correctly, then it might be possible that a proxy is set and the forwarder tries to connect to the proxy instead of WEC. #### TIP: Sometimes proxy settings are not displayed in any GUI window. Check them using netsh winhttp show proxy. To reset proxy settings, use netsh winhttp reset proxy. # **WEC** configuration example ``` server: "wec.mydomain" port: 5986 keyfile: "/opt/syslog-ng/etc/server.key" certfile: "/opt/syslog-ng/etc/server.crt" cadir: "/opt/syslog-ng/etc/cadir" log: level: "info" file: "/opt/syslog-ng/var/wec.log" eventdestination: unixdatagram: "/opt/syslog-ng/var/run/wec.sock" subscriptions: - name: "ExampleDefaultSubscription" computers: - "windowsdc.mydomain.com" - "*.trusteddomain.com" contentformat: "RenderedText" heartbeats: 900.000 connectionretry: 60.0 batchtimeoutlimit: 900.000 queries: | <QueryList> <Query Id="0"> <Select Path="Application">*</Select> <Select Path="Security">*</Select> <Select Path="System">*</Select> </Query> </QueryList> ``` One Identity solutions eliminate the complexities and time-consuming processes often required to govern identities, manage privileged accounts and control access. Our solutions enhance business agility while addressing your IAM challenges with on-premises, cloud and hybrid environments. ## **Contacting us** For sales and other inquiries, such as licensing, support, and renewals, visit https://www.oneidentity.com/company/contact-us.aspx. ## **Technical support resources** Technical support is available to One Identity customers with a valid maintenance contract and customers who have trial versions. You can access the Support Portal at https://support.oneidentity.com/. The Support Portal provides self-help tools you can use to solve problems quickly and independently, 24 hours a day, 365 days a year. The Support Portal enables you to: - Submit and manage a Service Request - View Knowledge Base articles - Sign up for product notifications - Download software and technical documentation - View how-to videos at www.YouTube.com/OneIdentity - Engage in community discussions - · Chat with support engineers online - View services to assist you with your product