syslog-ng Premium Edition 7.0.12 Performance Guideline for syslog-ng Premium Edition #### Copyright 2018 One Identity LLC. #### **ALL RIGHTS RESERVED.** This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording for any purpose other than the purchaser's personal use without the written permission of One Identity LLC . The information in this document is provided in connection with One Identity products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of One Identity LLC products. EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT, ONE IDENTITY ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ONE IDENTITY BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ONE IDENTITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. One Identity makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. One Identity does not make any commitment to update the information contained in this document. If you have any questions regarding your potential use of this material, contact: One Identity LLC. Attn: LEGAL Dept 4 Polaris Way Aliso Viejo, CA 92656 Refer to our Web site (http://www.OneIdentity.com) for regional and international office information. #### **Patents** One Identity is proud of our advanced technology. Patents and pending patents may apply to this product. For the most current information about applicable patents for this product, please visit our website at http://www.OneIdentity.com/legal/patents.aspx. #### **Trademarks** One Identity and the One Identity logo are trademarks and registered trademarks of One Identity LLC. in the U.S.A. and other countries. For a complete list of One Identity trademarks, please visit our website at <a href="https://www.oneIdentity.com/legal">www.oneIdentity.com/legal</a>. All other trademarks are the property of their respective owners. #### Legend - **WARNING:** A WARNING icon indicates a potential for property damage, personal injury, or death. - **CAUTION:** A CAUTION icon indicates potential damage to hardware or loss of data if instructions are not followed. - 1 IMPORTANT, NOTE, TIP, MOBILE, or VIDEO: An information icon indicates supporting information. syslog-ng PE Performance Guideline for syslog-ng Premium Edition Updated - December 2018 Version - 7.0.12 ### **Contents** | Preface | 4 | |---------------------------------------|----| | Executive summary | 5 | | Optimizing multithreaded performance | 5 | | Use cases for performance improvement | 8 | | Configuration guidelines | 9 | | The test environment | 15 | | About us | 17 | | Contacting us | 17 | | Technical support resources | 17 | ### **Preface** This document summarizes the findings of several performance tests and measurements carried out on different versions of syslog-ng Premium Edition. The main focus was syslogng PE version 7.0, but similar performance tests are performed and published regularly with every major syslog-ng PE release. ### **Executive summary** The main findings of the performance tests are as follows: - The fastest way the syslog-ng PE application can receive log messages from the network is using plain TCP transport with the network() source driver. - By default, syslog-ng PE runs in multithreaded mode to scale to multiple CPUs or cores for increased performance. Depending on the exact syslog-ng PE configuration, environment, and other parameters, syslog-ng PE is capable of processing: - over 635,000 messages per second (over 235 MB of data per second) when receiving messages from multiple connections and storing them in text files, - over 615,000 messages per second (over 230 MB of data per second) when receiving messages from multiple secure (TLS-encrypted) connections and storing them in text files. - The tests were performed using real log messages of 135-2100 bytes and of varying complexity, obtained from real machines. The tests ran for 10 minutes. - PatternDB only works on one thread. Therefore, using PatternDB can significantly decrease performance depending on how many messages match a pattern in the specified ruleset. If a large amount of messages are being received but the specified pattern matches a small number of messages, there is no significant performance degradation. - Using disk buffer on the client side can significantly degrade performance. This is especially the case if relays that are heavily loaded are used together with disk buffer enabled on the relays. Performance can also be degraded if lots of messages are received on the syslog-ng server, and are forwarded through the network (for example, to a log analyzer or SIEM), and therefore disk buffer is enabled on the server as well. - Higher stats\_level decreases the performance. For example, stats\_level(2) means -10% in performance. - Simple filtering (for example, filtering on facility or tag) has no significant impact on performance. However, regular expressions, even simple ones, slightly decrease the message-processing rate, by about 15%. - Results of the performance tests show a standard deviation of +-5%. This means that when comparing measurements of a particular dimension (for example, nonencrypted versus encrypted log processing), a difference of 5% does not necessarily indicate a real difference in performance. ### **Optimizing multithreaded performance** #### Sources: File sources scale based on the number of files that the syslog-ng PE is reading. If there are 10 files all coming to the same source, then that source can use 10 threads, one thread for each file. ### NOTE: When collecting log messages from multiple files, the file source is a wildcard-file() source. TCP-based network sources scale based on the number of active connections. This means that if there are 10 incoming connections all coming to the same source, then that source can use 10 threads, one thread for each connection. #### 0 NOTE: UDP-based network sources do not scale by themselves because they always use a single thread. If you want to handle a large number of UDP connections, it is best to configure a subset of your clients to send the messages to a different port of your syslog-ng server, and use separate source definitions for each port. Figure 1: How multithreading works — sources #### Message processors: Message processors — such as filters, rewrite rules, and parsers — are executed by the reader thread in a sequential manner. For example, if you have a log path that defines two sources and a filter, the filter will be performed by the source1 reader thread when log messages come from source1, and by the source2 reader thread when log messages come from source2. This means that if log messages come from both source1 and source2, they will both have a reader thread and that way filtering will be performed simultaneously. #### NOTE: This is not true for PatternDB because it uses message correlation. When using PatternDB, it runs in only one thread at a time, and this significantly decreases performance. #### **Destinations:** In syslog-ng, every destination has a writer thread. To improve scaling on the destination side, use multiple destinations instead of one. For example, when sending messages to a syslog-ng server, you can use multiple connections to the server if you configure the syslog-ng server to receive messages on multiple ports, and configure the clients to use both ports. When writing the log messages to files, use macros in the filename to split the messages to separate files (for example, using the \${HOST} macro). Files with macros in their filenames are processed in separate writer threads. Figure 2: How multithreading works — destinations # Use cases for performance improvement #### Improving performance with lots of connections: If there are several thousand active connections simultaneously, it is advised to place relay syslog-ng-s on another computer in front of the syslog-ng server. Switching between active connections is time-consuming, while the amount of incoming messages is usually not significant. This problem is solved by using relays, since they are collecting the logs. The syslog-ng solution can handle lots of log messages sent from a few connections easily. In the case of non-encrypted connections, it is best to handle no more than 5,000 connections per syslog-ng PE application. While in the case of secure (TLS-encrypted) connections, a single syslog-ng PE application should handle no more than 1,000 When your environment has more connections than the numbers advised above, then our recommendation is that those should be handled by more than one syslog-ng PE application. For example, in the case of secure connections, when there are 2,000 connections, employ two relays, each of them running one syslog-ng PE application and handling 1,000 connections. Note, however, that the exact capacity of syslog-ng PE depends on your particular circumstances (such as hardware performance, number and complexity of log messages, and so on), and needs to be measured on an individual basis. The recommendations indicated here are valid in an environment that handles a maximum of 200,000 EPS. #### Filtering messages: It is advised to use the simplest filters when filtering incoming messages. If a message can be filtered with several types of filters, check the measured data. For example, if a message is filtered with a regexp, the performance of syslog-ng can drop down to 85% of the original performance level. Whereas if the tag or facility filters are used, the decrease in performance is between 1-5%. When using multiple filters one after the other, or connecting filters with the logical AND/OR operators, the order of filters has a significant impact on performance. We recommend to put those filters in front that are the most likely to match the incoming log messages (if known). #### **Identifying bottlenecks:** It is advised to first identify the bottlenecks if the performance of syslog-ng seems to be too low. For example, if syslog-ng is writing on slow disks at the destination side, upgrading the source-side device will not help increasing the performance. ### **Configuration guidelines** Log messages can be collected and processed at a faster rate in the latest version of syslog-ng Premium Edition compared to version 6 LTS and earlier versions but several configuration aspects will affect the rate at which log messages are collected and stored. The following tables show the results of tests performed with syslog-ng PE version 7.0. Taking the following factors into consideration will optimize syslog-ng Premium Edition performance: #### **Number of network connections:** In a multithreaded environment, an increase in connections will have no significant impact on the rate at which syslog-ng PE processes log messages. Table 1: Number of network connections | Number of Connections | Messages Per Second | Average Data Rate (MB/sec) | |-----------------------|---------------------|----------------------------| | 10 | 640,000 | 240 | | 50 | 550,000 | 205 | | 100 | 530,000 | 200 | | 200 | 545,000 | 205 | Configuration: path - TCP, destination - multiple files (using macros), message size: 400 bytes ### **Encrypted log transfer:** The syslog-ng PE application uses the Transport Layer Security (TLS) protocol to encrypt the communication. TLS also allows the mutual authentication of the host and the server using X.509 certificates. Table 2: Encrypted log transfer - 10 connections | | Legacy syslog | | IETF syslog | | |----------------------------|------------------|---------------------|------------------|---------------------| | | Not<br>Encrypted | TLS Encryp-<br>tion | Not<br>Encrypted | TLS Encryp-<br>tion | | Messages per second | 640,000 | 620,000 | 65,000 | 65,000 | | Average data rate (MB/sec) | 240 | 230 | 35 | 35 | Configuration: path – TCP, multithreaded, 10 connections, destination – multiple files (using macros), message size: 400 bytes Table 3: Encrypted log transfer - 100 connections | | Legacy syslog | | IETF syslog | | |----------------------------|------------------|---------------------|------------------|---------------------| | | Not<br>Encrypted | TLS Encryp-<br>tion | Not<br>Encrypted | TLS Encryp-<br>tion | | Messages per second | 520,000 | 565,000 | 60,000 | 60,000 | | Average data rate (MB/sec) | 195 | 210 | 30 | 30 | Configuration: path - TCP, multithreaded, 100 connections, destination - multiple files (using macros), message size: 400 bytes #### **Type of storage:** The syslog-ng PE application can: - Send syslog messages through the network to a syslog-ng PE server. - Store log messages in a database. - Store log messages in the Hadoop Distributed File System (HDFS). - Send log messages to Elasticsearch. Table 4: Type of storage - 10 connections | Type of Storage | Messages Per Second | Average Data Rate (MB/sec) | |---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------| | Plain text file | 270,000 | 100 | | Multiple plain text files (using macros, with log messages divided by hostname) | 640,000 | 240 | | Network destination — legacy syslog | 250,000 | 95 | | Database destination — MongoDB | In the case of MongoDB destinations, performance is influenced<br>by a number of criteria unrelated to syslog-ng. If you need<br>information on MongoDB-related performance measurements,<br>contact One Identity. | | | | If you are an existing customer contact your Pre-Sales Enginee | | | Database destination — SQL | In the case of SQL destinations, performance is influenced by a number of criteria unrelated to syslog-ng. If you need information on SQL-related performance measurements, contact One Identity. | | | Type of Storage | Messages Per Second | Average Data Rate | |-----------------|---------------------|-------------------| | | | (MB/sec) | If you are an existing customer, contact-support;. Otherwise, contact your Pre-Sales Engineer. Configuration: path – TCP, multithreaded, 10 connections, message size: 400 bytes Table 5: Type of storage - 100 connections | Type of<br>Storage | Messages Per Second | Average Data Rate (MB/sec) | | |---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--| | Plain text file | 410,000 | 155 | | | Multiple plain<br>text files<br>(using<br>macros, with<br>log messages<br>divided by<br>hostname) | 505,000 | 190 | | | Network<br>destination —<br>legacy syslog | 245,000 | 90 | | | Database<br>destination —<br>MongoDB | In the case of MongoDB destinations, performance is influenced by a number of criteria unrelated to syslog-ng. If you need information on MongoDB-related performance measurements, contact One Identity. | | | | | If you are an existing customer, cor your Pre-Sales Engineer. | itact-support;. Otherwise, contact | | | Database<br>destination —<br>SQL | In the case of SQL destinations, performance is influenced by a number of criteria unrelated to syslog-ng. If you need information on SQL-related performance measurements, contact One Identity. | | | | | If you are an existing customer, cor your Pre-Sales Engineer. | tact-support;. Otherwise, contact | | | HDFS | 110,000 | 40 | | | | nodes in use. When syslog-ng writes places these on different data nodes increase in proportion to the numbe in a linear fashion). The data provid case of a single data node. | r of data nodes used (not necessarily ed here shows performance in the | | | Elasticsearch | 1,260 (with flush_limit(1)) | <pre>1 (with flush_limit(1))</pre> | | | Type of Storage | Messages Per Second | Average Data Rate (MB/sec) | |-----------------|--------------------------------|----------------------------| | | 9,700 (with flush_limit(5000)) | 5 (with flush_limit(5000)) | Configuration: path – TCP, multithreaded, 100 connections, message size: 400 bytes ### Number of files and directories when reading log messages from multiple plain text files: When reading log messages from a set of files, the number of directories and the number of files per directory used have no significant impact on performance. Table 6: Number of files and directories — using the inotify monitor method | Number of<br>Directories | Number of Files Per<br>Directory | Messages Per<br>Second | Average Data Rate (MB/sec) | |--------------------------|----------------------------------|------------------------|----------------------------| | 1 | 1 | 110,000 | 45 | | | 10 | 175,000 | 70 | | | 100 | 150,000 | 60 | | 10 | 1 | 180,000 | 70 | | | 10 | 150,000 | 60 | | | 100 | 130,000 | 50 | | 100 | 1 | 150,000 | 60 | | | 10 | 130,000 | 50 | | | 100 | 130,000 | 50 | Configuration: path - TCP, multithreaded, monitor-method(inotify), File source message size: 400 bytes Table 7: Number of files and directories — using the poll monitor method | Number of<br>Directories | Number of Files Per<br>Directory | Messages Per<br>Second | Average Data Rate (MB/sec) | |--------------------------|----------------------------------|------------------------|----------------------------| | 1 | 1 | 110,000 | 45 | | | 10 | 165,000 | 65 | | | 100 | 150,000 | 60 | | 10 | 1 | 175,000 | 70 | | | 10 | 150,000 | 60 | | | 100 | 130,000 | 50 | | Number of<br>Directories | Number of Files Per<br>Directory | Messages Per<br>Second | Average Data Rate (MB/sec) | |--------------------------|----------------------------------|------------------------|----------------------------| | 100 | 1 | 150,000 | 60 | | | 10 | 130,000 | 50 | | | 100 | 125,000 | 50 | Configuration: path - TCP, multithreaded, monitor-method(poll), File source message size: 400 bytes #### Disk buffer: The syslog-ng Premium Edition stores messages on the local hard disk if the central log server or the network connection to the server becomes unavailable. **Table 8: Disk buffer** | | Without Disk<br>Buffer | Reliable | Normal | |----------------------------|------------------------|----------|--------| | Messages per second | 345,000 | 40,000 | 60,000 | | Average data rate (MB/sec) | 130 | 15 | 20 | Configuration: path - TCP, multithreaded, disk buffer: 1000 MB, 100 connections, message size: 400 bytes #### Log pre-processing: Depending on the type of pre-processing, the rate at which syslog-ng PE collects messages can vary. Rewriting, using parsers, as well as pattern recognition processing through PatternDB have a significant impact on the message processing rate. Regular expressions have only a light impact, while facility filtering and tag filtering have virtually no impact at all. Note that in a multithreaded environment, PatternDB has a particularly large impact on performance. When combining multiple types of pre-processing, processing rate will drop below the processing rate of the slowest pre-processing method used. **Table 9: Log pre-processing — 10 connections** | | Messages Per<br>Second | Average Data Rate (MB/sec) | |-------------------------------------------------------|------------------------|----------------------------| | No pre-processing | 680,000 | 255 | | Simple regexp (for example, matching a single string) | 570,000 | 210 | | | Messages Per<br>Second | Average Data Rate (MB/sec) | |------------------------------------------------|------------------------|----------------------------| | Facility filter | 670,000 | 250 | | Tag filter | 650,000 | 245 | | PatternDB (10 % of messages matched) | 40,000 | 15 | | Simple rewrite (for example, rewrite hostname) | 245,000 | 90 | | Python parser | 35,000 | 15 | | JSON parser | 40,000 | 25 | | kv parser | 190,000 | 70 | | XML parser | 15,000 | 20 | Configuration: path – TCP, multithreaded, 10 connections, message size: 400 bytes Table 10: Log pre-processing - 100 connections | | Messages Per<br>Second | Average Data Rate (MB/sec) | |-------------------------------------------------------|------------------------|----------------------------| | No pre-processing | 515,000 | 195 | | Simple regexp (for example, matching a single string) | 510,000 | 190 | | Facility filter | 500,000 | 185 | | Tag filter | 530,000 | 200 | | PatternDB (10 % of messages matched) | 35,000 | 15 | | Simple rewrite (for example, rewrite hostname) | 360,000 | 135 | | Python parser | 35,000 | 15 | | JSON parser | 35,000 | 25 | | kv parser | 140,000 | 50 | | XML parser | 15,000 | 15 | | | | | Configuration: path – TCP, multithreaded, 100 connections, message size: 400 bytes ### The test environment The test environment consisted of a single client and a server hardware, connected via a Gigabit switch. Note that in certain test runs, the client opened several separate connections to the servers to simulate real-life logging environments. The syslog-ng Premium Edition application was installed from the .run package. #### **Hardware parameters:** The client hardware had the following main parameters: - 2x Intel® Xeon® Processor E5-2620 v3 (15M Cache, 2.40 GHz, 8 GT/s Intel® QPI, 6 cores) - Hyperthreading disabled, turbo boost disabled - 16 GB RAM - 10 Gbps Ethernet - HDD 500 GB - Operating system: ubuntu-xenial amd64 The server hardware had the following main parameters: - 2x Intel® Xeon® Processor E5-2620 v3 (15M Cache, 2.40 GHz, 8 GT/s Intel® QPI, 6 cores) - Hyperthreading disabled, turbo boost disabled - 16 GB RAM - 10 Gbps Ethernet - SSD 500 GB - Operating system: ubuntu-xenial amd64 #### **Performance improvement:** The following settings were used for performance improvement: • Improving performance with lots of connections: ``` max connections = active connections log iw size = number of active connections * 1000 log fetch limit = 1000 flush lines = 1000 log fifo size = log iw size * 2 use_dns = no keep_hostname = yes keep_timestamp = no ``` • Improving performance with a few connections but high amount of traffic: Source side: log\_iw\_size = number of active\_connections \* 100,000 log\_fetch\_limit = number of active\_connections \* 100,000 Destination side: log fifo size = max connections \* (log iw size/number of active connections) #### **Resource usage:** The performance tests were carried out in multithreaded mode: threaded(yes) One way to optimize the resource usage of syslog-ng PE is to limit the number of worker threads that syslog-ng uses. This helps prevent syslog-ng PE from using all available CPUs. You can limit the number of worker threads using the --worker-threads command-line option that sets the maximum total number of threads syslog-ng PE can use, including the main syslog-ng PE thread. Note, however, that SQL sources and destinations, as well as Java destinations, such as Elasticsearch, HDFS, and Apache Kafka, always run in their own, separate threads. This means that the --worker-threads command-line option has no impact on them. One Identity solutions eliminate the complexities and time-consuming processes often required to govern identities, manage privileged accounts and control access. Our solutions enhance business agility while addressing your IAM challenges with on-premises, cloud and hybrid environments. ### **Contacting us** For sales or other inquiries, visit https://www.oneidentity.com/company/contact-us.aspx or call +1-800-306-9329. # **Technical support resources** Technical support is available to One Identity customers with a valid maintenance contract and customers who have trial versions. You can access the Support Portal at https://support.oneidentity.com/. The Support Portal provides self-help tools you can use to solve problems quickly and independently, 24 hours a day, 365 days a year. The Support Portal enables you to: - Submit and manage a Service Request - View Knowledge Base articles - Sign up for product notifications - Download software and technical documentation - View how-to-videos at www.YouTube.com/OneIdentity - Engage in community discussions - · Chat with support engineers online - View services to assist you with your product